Hypoxia-inducible lipid droplet-associated protein inhibits adipose triglyceride lipase

被引:53
作者
Das, Krishna M. Padmanabha [1 ]
Wechselberger, Lisa [1 ]
Liziczai, Marton [1 ]
Rodriguez, Montserrat De la Rosa [2 ]
Grabner, Gernot F. [1 ]
Heier, Christoph [1 ]
Viertlmayr, Roland [1 ]
Radler, Claudia [1 ]
Lichtenegger, Joerg [1 ]
Zimmermann, Robert [1 ]
Borst, Jan Willem [3 ]
Zechner, Rudolf [1 ]
Kersten, Sander [2 ]
Oberer, Monika [1 ,4 ]
机构
[1] Karl Franzens Univ Graz, Inst Mol Biosci, A-8010 Graz, Austria
[2] Wageningen Univ, Div Human Nutr, Wageningen, Netherlands
[3] Wageningen Univ, Lab Biochem & Microspectroscopy Res Facil, Wageningen, Netherlands
[4] BioTechMed Graz, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
hypoxia-inducible gene-2; intracellular lipolysis; adipocytes; lipolysis and fatty acid metabolism; triglycerides; SWITCH GENE 2; LIPOLYSIS; TARGET; EXPRESSION; DEPOSITION; REGULATOR; CGI-58; CANCER; HIG2; G0S2;
D O I
10.1194/jlr.M082388
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Elaborate control mechanisms of intracellular triacylglycerol ( TAG) breakdown are critically involved in the maintenance of energy homeostasis. Hypoxia-inducible lipid droplet-associated protein (HILPDA)/hypoxia-inducible gene-2 (Hig-2) has been shown to affect intracellular TAG levels, yet, the underlying molecular mechanisms are unclear. Here, we show that HILPDA inhibits adipose triglyceride lipase (ATGL), the enzyme catalyzing the first step of intracellular TAG hydrolysis. HILPDA shares structural similarity with G0/G1 switch gene 2 (G0S2), an established inhibitor of ATGL. HILPDA inhibits ATGL activity in a dose-dependent manner with an IC50 value of similar to 2 mu M. ATGL inhibition depends on the direct physical interaction of both proteins and involves the N-terminal hydrophobic region of HILPDA and the N-terminal patatin domain-containing segment of ATGL. Finally, confocal microscopy combined with Forster resonance energy transfer-fluorescence lifetime imaging microscopy analysis indicated that HILPDA and ATGL colocalize and physically interact intracellularly. These findings provide a rational biochemical explanation for the tissue-specific increased TAG accumulation in HILPDA-overexpressing transgenic mouse models.
引用
收藏
页码:531 / 541
页数:11
相关论文
共 43 条
  • [11] Gibson DG, 2009, NAT METHODS, V6, P343, DOI [10.1038/nmeth.1318, 10.1038/NMETH.1318]
  • [12] Hypoxia-inducible protein 2 is a novel lipid droplet protein and a specific target gene of hypoxia-inducible factor-1
    Gimm, Tina
    Wiese, Melanie
    Teschemacher, Barbara
    Deggerich, Anke
    Schoedel, Johannes
    Knaup, Karl X.
    Hackenbeck, Thomas
    Hellerbrand, Claus
    Amann, Kerstin
    Wiesener, Michael S.
    Hoening, Stefan
    Eckardt, Kai-Uwe
    Warnecke, Christina
    [J]. FASEB JOURNAL, 2010, 24 (11) : 4443 - 4458
  • [13] Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%
    Goedhart, Joachim
    von Stetten, David
    Noirclerc-Savoye, Marjolaine
    Lelimousin, Mickael
    Joosen, Linda
    Hink, Mark A.
    van Weeren, Laura
    Gadella, Theodorus W. J., Jr.
    Royant, Antoine
    [J]. NATURE COMMUNICATIONS, 2012, 3
  • [14] The N-terminal Region of Comparative Gene Identification-58 (CGI-58) Is Important for Lipid Droplet Binding and Activation of Adipose Triglyceride Lipase
    Gruber, Astrid
    Cornaciu, Irina
    Lass, Achim
    Schweiger, Martina
    Poeschl, Margret
    Eder, Christina
    Kumari, Manju
    Schoiswohl, Gabriele
    Wolinski, Heimo
    Kohlwein, Sepp D.
    Zechner, Rudolf
    Zimmermann, Robert
    Oberer, Monika
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (16) : 12289 - 12298
  • [15] Hallmarks of Cancer: The Next Generation
    Hanahan, Douglas
    Weinberg, Robert A.
    [J]. CELL, 2011, 144 (05) : 646 - 674
  • [16] The G0/G1 switch gene 2 (G0S2): Regulating metabolism and beyond
    Heckmann, Bradlee L.
    Zhang, Xiaodong
    Xie, Xitao
    Liu, Jun
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2013, 1831 (02): : 276 - 281
  • [17] Visualization of BRI1 and SERK3/BAK1 Nanoclusters in Arabidopsis Roots
    Hutten, Stefan J.
    Hamers, Danny S.
    den Toorn, Marije Aan
    van Esse, Wilma
    Nolles, Antsje
    Bucherl, Christoph A.
    de Vries, Sacco C.
    Hohlbein, Johannes
    Borst, Jan Willem
    [J]. PLOS ONE, 2017, 12 (01):
  • [18] INHIBITION OF FATTY-ACID OXIDATION AND DECREASE OF OXYGEN-CONSUMPTION OF WORKING RAT-HEART BY 4-BROMOCROTONIC ACID
    HUTTER, JF
    SCHWEICKHARDT, C
    PIPER, HM
    SPIECKERMANN, PG
    [J]. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1984, 16 (01) : 105 - 108
  • [19] MicroScale Thermophoresis: Interaction analysis and beyond
    Jerabek-Willemsen, Moran
    Andre, Timon
    Wanner, Randy
    Roth, Heide Marie
    Duhr, Stefan
    Baaske, Philipp
    Breitsprecher, Dennis
    [J]. JOURNAL OF MOLECULAR STRUCTURE, 2014, 1077 : 101 - 113
  • [20] The Phyre2 web portal for protein modeling, prediction and analysis
    Kelley, Lawrence A.
    Mezulis, Stefans
    Yates, Christopher M.
    Wass, Mark N.
    Sternberg, Michael J. E.
    [J]. NATURE PROTOCOLS, 2015, 10 (06) : 845 - 858