Sharp conditions of global existence for nonlinear Schrodinger and Klein-Gordon equations

被引:131
作者
Zhang, J
机构
[1] Univ Tokyo, Dept Math Sci, Meguro Ku, Tokyo 153, Japan
[2] Sichuan Normal Univ, Dept Math, Chengdu 610068, Peoples R China
关键词
nonlinear Schrodinger equation; nonlinear Klein-Gordon equation; ground state; global existence; blowup;
D O I
10.1016/S0362-546X(00)00180-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Global existence for the Cauchy problems of nonlinear Schrodinger and Klein-Gordon equations was presented. The relations between the global existence of the Cauchy problem of these equations and the ground state were observed. It was proved that the solutions of the Cauchy problem for the Schrodinger equation blow up in a finite time for a class of sufficiently large data and exist in all time for small initial data.
引用
收藏
页码:191 / 207
页数:17
相关论文
共 26 条
[1]  
Ball J. M., 1978, Nonlinear Evolution Equations, P189
[2]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[3]  
BERESTYCKI H, 1983, CR ACAD SCI I-MATH, V297, P307
[4]  
BERESTYCKI H, 1981, CR ACAD SCI I-MATH, V293, P489
[5]  
Cazenave T., 1989, TEXTOS METODOS MATEM, V22
[6]  
GIDAS B, 1981, MATH ANAL APPL, P370
[7]   LONG-RANGE SCATTERING FOR NONLINEAR SCHRODINGER AND HARTREE-EQUATIONS IN SPACE DIMENSION N-GREATER-THAN-OR-EQUAL-TO-2 [J].
GINIBRE, J ;
OZAWA, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (03) :619-645
[8]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .1. CAUCHY-PROBLEM, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :1-32
[9]   THE GLOBAL CAUCHY-PROBLEM FOR THE NON-LINEAR SCHRODINGER-EQUATION REVISITED [J].
GINIBRE, J ;
VELO, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1985, 2 (04) :309-327
[10]   BLOWING UP OF SOLUTIONS TO CAUCHY-PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS [J].
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (09) :1794-1797