Virtual element methods for the obstacle problem

被引:25
作者
Wang, Fei [1 ]
Wei, Huayi [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
virtual element method; variational inequality; polygonal meshes; error estimates; DISCONTINUOUS GALERKIN METHODS; APPROXIMATION; FORMULATION;
D O I
10.1093/imanum/dry055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study virtual element methods (VEMs) for solving the obstacle problem, which is a representative elliptic variational inequality of the first kind. VEMs can be regarded as a generalization of standard finite element methods with the addition of some suitable nonpolynomial functions, and the degrees of freedom are carefully chosen so that the stiffness matrix can be computed without actually computing the nonpolynomial functions. With this special design, VEMS can easily deal with complicated element geometries. In this paper we establish a priori error estimates of VEMs for the obstacle problem. We prove that the lowest-order (k = 1) VEM achieves the optimal convergence order, and suboptimal order is obtained for the VEM with k = 2. Two numerical examples are reported to show that VEM can work on very general polygonal elements, and the convergence orders in the H(1 norm agree )well with the theoretical prediction.
引用
收藏
页码:708 / 728
页数:21
相关论文
共 40 条
  • [1] A C1 VIRTUAL ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION WITH POLYGONAL MESHES
    Antonietti, P. F.
    Da Veiga, L. Beirao
    Scacchi, S.
    Verani, M.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) : 34 - 56
  • [2] A STREAM VIRTUAL ELEMENT FORMULATION OF THE STOKES PROBLEM ON POLYGONAL MESHES
    Antonietti, P. F.
    da Veiga, L. Beirao
    Mora, D.
    Verani, M.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) : 386 - 404
  • [3] A MIMETIC DISCRETIZATION OF ELLIPTIC OBSTACLE PROBLEMS
    Antonietti, Paola F.
    da Veiga, Lourenco Beirao
    Verani, Marco
    [J]. MATHEMATICS OF COMPUTATION, 2013, 82 (283) : 1379 - 1400
  • [4] Atkinson K, 2009, Theoretical Numerical Analysis: A Functional Analysis Framework, V3rd
  • [5] Beirao da Veiga L., 2014, MATH MOD METH APPL S, V24, P1541, DOI DOI 10.1142/S021820251440003X
  • [6] BRENNER S. C., 2008, The mathematical theory of finite element methods, V15, DOI 10.1007/978-0-387-75934-0
  • [7] A QUADRATIC C0 INTERIOR PENALTY METHOD FOR THE DISPLACEMENT OBSTACLE PROBLEM OF CLAMPED KIRCHHOFF PLATES
    Brenner, Susanne C.
    Sung, Li-Yeng
    Zhang, Hongchao
    Zhang, Yi
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (06) : 3329 - 3350
  • [8] BREZZI F, 1977, NUMER MATH, V28, P431, DOI 10.1007/BF01404345
  • [9] Virtual Element Methods for plate bending problems
    Brezzi, Franco
    Marini, L. Donatella
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 253 : 455 - 462
  • [10] Chen L, 2008, Technical report