Maximizing and minimizing the number of generalized colorings of trees

被引:0
|
作者
Engbers, John [1 ]
Stocker, Christopher [1 ]
机构
[1] Marquette Univ, Dept Math Stat & Comp Sci, Milwaukee, WI 53201 USA
关键词
Vertex coloring; Extremal enumeration; Tree; Conflict-free coloring; UNIQUE-MAXIMUM; SETS;
D O I
10.1016/j.disc.2018.12.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify the trees on n vertices with the maximum and the minimum number of certain generalized colorings, including conflict-free, odd, non-monochromatic, star, and star rainbow vertex colorings. We also extend a result of Cutler and Radcliffe on the maximum and minimum number of existence homomorphisms from a tree to a completely looped graph on q vertices. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1048 / 1055
页数:8
相关论文
共 50 条
  • [41] Generalized edge-rankings of trees
    Zhou, X
    Kashem, MA
    Nishizeki, T
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 1997, 1197 : 390 - 404
  • [42] On the Number of Minimum Dominating Sets in Trees
    Taletskii, D. S.
    MATHEMATICAL NOTES, 2023, 113 (3-4) : 552 - 566
  • [43] An algorithm for partial Grundy number on trees
    Shi, Z
    Goddard, W
    Hedetniemi, ST
    Kennedy, K
    Laskar, R
    McRae, A
    DISCRETE MATHEMATICS, 2005, 304 (1-3) : 108 - 116
  • [44] The Game Chromatic Number of Trees and Forests
    Dunn, Charles
    Larsen, Victor
    Lindke, Kira
    Retter, Troy
    Toci, Dustin
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2015, 17 (02) : 31 - 48
  • [45] A BOUND FOR THE LOCATING CHROMATIC NUMBER OF TREES
    Behtoei, Ali
    Anbarloei, Mahdi
    TRANSACTIONS ON COMBINATORICS, 2015, 4 (01) : 31 - 41
  • [46] The number of rooted trees of given depth
    Pach, Peter Pal
    Pluhar, Gabriella
    Pongracz, Andras
    Szabo, Csaba
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (02)
  • [47] Links, bridge number, and width trees
    He, Qidong
    Taylor, Scott A.
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2023, 75 (01) : 73 - 111
  • [48] A note on the independence number, domination number and related parameters of random binary search trees and random recursive trees
    Fuchs, Michael
    Holmgren, Cecilia
    Mitsche, Dieter
    Neininger, Ralph
    DISCRETE APPLIED MATHEMATICS, 2021, 292 : 64 - 71
  • [49] TREES WITH EQUAL STRONG ROMAN DOMINATION NUMBER AND ROMAN DOMINATION NUMBER
    Chen, Xue-Gang
    Sohn, Moo Young
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (01) : 31 - 44
  • [50] The Ramsey Numbers of Trees Versus Generalized Wheels
    Wang, Longqin
    Chen, Yaojun
    GRAPHS AND COMBINATORICS, 2019, 35 (01) : 189 - 193