Maximizing and minimizing the number of generalized colorings of trees

被引:0
|
作者
Engbers, John [1 ]
Stocker, Christopher [1 ]
机构
[1] Marquette Univ, Dept Math Stat & Comp Sci, Milwaukee, WI 53201 USA
关键词
Vertex coloring; Extremal enumeration; Tree; Conflict-free coloring; UNIQUE-MAXIMUM; SETS;
D O I
10.1016/j.disc.2018.12.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify the trees on n vertices with the maximum and the minimum number of certain generalized colorings, including conflict-free, odd, non-monochromatic, star, and star rainbow vertex colorings. We also extend a result of Cutler and Radcliffe on the maximum and minimum number of existence homomorphisms from a tree to a completely looped graph on q vertices. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1048 / 1055
页数:8
相关论文
共 50 条
  • [31] Maximizing distance between center, centroid and subtree core of trees
    Dheer Noal Sunil Desai
    Kamal Lochan Patra
    Proceedings - Mathematical Sciences, 2019, 129
  • [32] Maximizing Laplacian spectral radius over trees with fixed diameter
    Lal, A. K.
    Patra, K. L.
    LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (05) : 457 - 461
  • [33] Domination number, independent domination number and k-independence number in trees
    Cui, Qing
    Zou, Xu
    DISCRETE APPLIED MATHEMATICS, 2025, 366 : 176 - 184
  • [34] The number of maximal independent sets in trees with a given number of leaves
    Taletskii, D. S.
    Malyshev, D. S.
    DISCRETE APPLIED MATHEMATICS, 2022, 314 : 321 - 330
  • [35] On the Number of Minimum Dominating Sets in Trees
    D. S. Taletskii
    Mathematical Notes, 2023, 113 : 552 - 566
  • [36] Trees with maximum number of maximal matchings
    Gorska, Joanna
    Skupien, Zdzislaw
    DISCRETE MATHEMATICS, 2007, 307 (11-12) : 1367 - 1377
  • [37] GENERALIZED CLUSTER TREES AND SINGULAR MEASURES
    Chen, Yen-Chi
    ANNALS OF STATISTICS, 2019, 47 (04) : 2174 - 2203
  • [38] Generalized edge-rankings of trees
    Zhou, X
    Kashem, A
    Nishizeki, T
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1998, E81A (02) : 310 - 320
  • [39] The number of subtrees of trees with given diameter
    Chen, Zichong
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (01)
  • [40] The achromatic number of bounded degree trees
    Cairnie, N
    Edwards, K
    DISCRETE MATHEMATICS, 1998, 188 (1-3) : 87 - 97