Empirical likelihood for generalized linear models with fixed and adaptive designs

被引:4
作者
Yan, Li [1 ]
Chen, Xia [1 ]
机构
[1] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
基金
中国国家自然科学基金;
关键词
generalized linear models; empirical likelihood; confidence regions; coverage probability; maximum empirical likelihood estimate; STRONG CONSISTENCY; CONFIDENCE-INTERVALS; INFERENCE; REGIONS;
D O I
10.1080/02331888.2014.929135
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Empirical likelihood inference for generalized linear models with fixed and adaptive designs is considered. It is shown that the empirical log-likelihood ratio at the true parameters converges to the standard chi-square distribution. Furthermore, we obtain the maximum empirical likelihood estimate of the unknown parameter and the resulting estimator is shown to be asymptotically normal. Some simulations are conducted to illustrate the proposed method.
引用
收藏
页码:978 / 988
页数:11
相关论文
共 29 条
[1]   Strong consistency of maximum quasi-likelihood estimate in generalized linear models via a last time [J].
Chang, YCI .
STATISTICS & PROBABILITY LETTERS, 1999, 45 (03) :237-246
[2]  
Chang YCI, 2001, J STAT PLAN INFER, V93, P277
[3]  
Chen KN, 1999, ANN STAT, V27, P1155
[4]  
Chen SX, 2003, STAT SINICA, V13, P69
[5]   Empirical likelihood confidence intervals for local linear smoothers [J].
Chen, SX ;
Qin, YS .
BIOMETRIKA, 2000, 87 (04) :946-953
[6]   Adaptive quasi-likelihood estimate in generalized linear models [J].
Chen, X ;
Chen, XR .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (06) :829-846
[7]   Empirical likelihood inference for parameters in a partially linear errors-in-variables model [J].
Chen, Xia ;
Cui, Hengjian .
STATISTICS, 2012, 46 (06) :745-757
[8]   Empirical likelihood inference for partial linear models under martingale difference sequence [J].
Chen, Xia ;
Cui, Hengjian .
STATISTICS & PROBABILITY LETTERS, 2008, 78 (17) :2895-2901
[9]   Asymptotic properties of the maximum likelihood estimate in generalized linear models with stochastic regressors [J].
Ding, Jie Li ;
Chen, Xi Ru .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (06) :1679-1686
[10]  
Gao QB, 2004, J SYSTEMS SCI MATH S, V25, P738