Control of depth of anaesthesia using fractional-order adaptive high-gain controller

被引:3
|
作者
Alavi, Maryam Boroujerdi [1 ]
Tabatabaei, Mohammad [1 ]
机构
[1] Islamic Azad Univ, Dept Elect Engn, Khomeinishahr Branch, Esfahan, Iran
关键词
medical control systems; gain control; adaptive control; closed loop systems; time-varying systems; fractional-order adaptive high-gain controller; control signal; pharmacokinetic-pharmacodynamic model; fractional-order adaptation mechanism; anaesthesia depth control; bispectral index; PK-PD model; propofol infusion rate; tracking problem; minimum phase systems; time-varying gain; BIS; PROPOFOL; SYSTEMS;
D O I
10.1049/iet-syb.2018.5017
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
This study presents a fractional-order adaptive high-gain controller for control of depth of anaesthesia. To determine the depth of anaesthesia, the bispectral index (BIS) is utilised. To attain the desired BIS, the propofol infusion rate (as the control signal) should be appropriately adjusted. The effect of the propofol on the human body is modelled with the pharmacokinetic-pharmacodynamic (PK/PD) model. Physical properties of the patient such as gender, age, height and a like determine the parameters of the PK/PD model. This necessitates us to employ an appropriate adaptive controller. To attain this goal, a fractional-order adaptive high-gain controller is constructed to solve the tracking problem for minimum phase systems with relative degree two (such as the PK/PD model). This leads to a time-varying gain adjusting according to a fractional-order adaptation mechanism. Simulation results performed on various patients (considering the external disturbance and the measurement noise) show the effectiveness of the proposed method.
引用
收藏
页码:36 / 42
页数:7
相关论文
共 50 条
  • [41] Fractional-Order Modeling of the Depth of Analgesia as Reference Model for Control Purposes
    Muresan, Cristina I.
    Hegedus, Erwin T.
    Mihai, Marcian D.
    Othman, Ghada Ben
    Birs, Isabela
    Copot, Dana
    Dulf, Eva Henrietta
    De Keyser, Robin
    Ionescu, Clara M.
    Neckebroek, Martine
    FRACTAL AND FRACTIONAL, 2024, 8 (09)
  • [42] Optimal fractional-order PID controller based on fractional-order actor-critic algorithm
    Shalaby, Raafat
    El-Hossainy, Mohammad
    Abo-Zalam, Belal
    Mahmoud, Tarek A.
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (03) : 2347 - 2380
  • [43] Synchronization in a fractional-order dynamic network with uncertain parameters using an adaptive control strategy
    Lin DU
    Yong YANG
    Youming LEI
    Applied Mathematics and Mechanics(English Edition), 2018, 39 (03) : 353 - 364
  • [44] Synchronization in a fractional-order dynamic network with uncertain parameters using an adaptive control strategy
    Lin Du
    Yong Yang
    Youming Lei
    Applied Mathematics and Mechanics, 2018, 39 : 353 - 364
  • [45] Fractional-Order PID Controller Synthesis for Bifurcation of Fractional-Order Small-World Networks
    Xiao, Min
    Tao, Binbin
    Zheng, Wei Xing
    Jiang, Guoping
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (07): : 4334 - 4346
  • [46] High-Gain Adaptive Control: A Derivative-Based Approach
    Blanchini, Franco
    Parisini, Thomas
    Pellegrino, Felice Andrea
    Pin, Gilberto
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (09) : 2164 - 2169
  • [47] Adaptive Fractional-Order Backstepping Control for a General Class of Nonlinear Uncertain Integer-Order Systems
    Li, Xinyao
    Wen, Changyun
    Li, Xiaolei
    He, Jinsong
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (07) : 7246 - 7256
  • [48] Improving Mobile Robot Maneuver Performance Using Fractional-Order Controller
    Acosta, Daniel
    Farina, Bibiana
    Toledo, Jonay
    Acosta, Leopoldo
    SENSORS, 2023, 23 (06)
  • [49] Adaptive control of fractional-order unified chaotic systems using a passivity-based control approach
    Suwat Kuntanapreeda
    Nonlinear Dynamics, 2016, 84 : 2505 - 2515
  • [50] Synchronization Analysis of Fractional-Order Neural Networks With Adaptive Intermittent-Active Control
    Han, Xin
    Cheng, Fengna
    Tang, Shan
    Zhang, Yuyan
    Fu, Yao
    Cheng, Weiguo
    Xu, Liang
    IEEE ACCESS, 2022, 10 : 75097 - 75104