Satisfiability of Acyclic and Almost Acyclic CNF Formulas

被引:2
作者
Ordyniak, Sebastian [1 ]
Paulusma, Daniel [2 ]
Szeider, Stefan [1 ]
机构
[1] Vienna Univ Technol, Inst Informat Syst, A-1040 Vienna, Austria
[2] Univ Durham, Sch Engn & Comp Sci, Durham DH1 3LE, England
来源
IARCS ANNUAL CONFERENCE ON FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE (FSTTCS 2010) | 2010年 / 8卷
基金
英国工程与自然科学研究理事会;
关键词
Satisfiability; chordal bipartite graphs; beta-acyclic hypergraphs; backdoor sets; parameterized complexity; LINEAR-TIME ALGORITHMS; HYPERTREE DECOMPOSITIONS; HYPERGRAPHS; WIDTH; COMPLEXITY;
D O I
10.4230/LIPIcs.FSTTCS.2010.84
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the propositional satisfiability problem (SAT) on classes of CNF formulas (formulas in Conjunctive Normal Form) that obey certain structural restrictions in terms of their hypergraph structure, by associating to a CNF formula the hypergraph obtained by ignoring negations and considering clauses as hyperedges on variables. We show that satisfiability of CNF formulas with so-called "beta-acyclic hypergraphs" can be decided in polynomial time. We also study the parameterized complexity of SAT for "almost" beta-acyclic instances, using as parameter the formula's distance from being beta-acyclic. As distance we use the size of smallest strong backdoor sets and the beta-hypertree width. As a by-product we obtain the W[1]-hardness of SAT parameterized by the (undirected) clique-width of the incidence graph, which disproves a conjecture by Fischer, Makowsky, and Ravve (Discr. Appl. Math. 156, 2008).
引用
收藏
页码:84 / 95
页数:12
相关论文
共 50 条
  • [11] Solving MAXSAT and #SAT on Structured CNF Formulas
    Saether, Sigve Hortemo
    Telle, Jan Arne
    Vatshelle, Martin
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2014, 2014, 8561 : 16 - 31
  • [12] Counting minimal transversals of β-acyclic hypergraphs
    Bergougnoux, Benjamin
    Capelli, Florent
    Kante, Mamadou Moustapha
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2019, 101 : 21 - 30
  • [13] On the Concentration of the Number of Solutions of Random Satisfiability Formulas
    Abbe, Emmanuel
    Montanari, Andrea
    RANDOM STRUCTURES & ALGORITHMS, 2014, 45 (03) : 362 - 382
  • [14] Algorithms for Testing Satisfiability Formulas
    Marin Vlada
    Artificial Intelligence Review, 2001, 15 : 153 - 163
  • [15] Algorithms for testing satisfiability formulas
    Vlada, M
    ARTIFICIAL INTELLIGENCE REVIEW, 2001, 15 (03) : 153 - 163
  • [16] Model Counting for CNF Formulas of Bounded Modular Treewidth
    Paulusma, Daniel
    Slivovsky, Friedrich
    Szeider, Stefan
    ALGORITHMICA, 2016, 76 (01) : 168 - 194
  • [17] COUNTING SOLUTIONS TO RANDOM CNF FORMULAS
    Galanis, Andreas
    Goldberg, Leslie Ann
    Guo, Heng
    Yang, Kuan
    SIAM JOURNAL ON COMPUTING, 2021, 50 (06) : 1701 - 1738
  • [18] On optimization problems in acyclic hypergraphs
    Kamiyama, Naoyuki
    INFORMATION PROCESSING LETTERS, 2023, 182
  • [19] Complexity of Some Problems Concerning 2CNF Formulas
    Hans Kleine Büning
    中山大学学报(社会科学版), 2003, (S1) : 131 - 146