Global asymptotic stability of a ratio-dependent predator-prey system with diffusion

被引:48
作者
Fan, YH [1 ]
Li, WT
机构
[1] NW Normal Univ, Coll Math & Informat Sci, Lanzhou 730070, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
关键词
upper and lower solutions; Lyapunov functions; predator-prey system;
D O I
10.1016/j.cam.2005.04.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a predator-prey system with diffusion. The global asymptotic stability of the unique positive constant equilibrium is obtained under certain conditions. The Method used here is the upper and lower solutions combined with the monotone iteration and constructing suitable Lyapunov functions. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:205 / 227
页数:23
相关论文
共 28 条
[1]   FUNCTIONAL-RESPONSES AND HETEROGENEITIES - AN EXPERIMENTAL TEST WITH CLADOCERANS [J].
ARDITI, R ;
PERRIN, N ;
SAIAH, H .
OIKOS, 1991, 60 (01) :69-75
[2]  
Barbalat I., 1959, REV ROUMAINE MATH PU, V4, P267
[3]   Global analyses in some delayed ratio-dependent predator-prey systems [J].
Beretta, E ;
Kuang, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (03) :381-408
[4]   THE ORIGINS AND EVOLUTION OF PREDATOR PREY THEORY [J].
BERRYMAN, AA .
ECOLOGY, 1992, 73 (05) :1530-1535
[5]   Periodic solutions of delayed ratio-dependent predator-prey models with monotonic or nonmonotonic functional responses [J].
Fan, YH ;
Li, WT ;
Wang, LL .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2004, 5 (02) :247-263
[6]  
Freedman H.I., 1980, DETERMINISTIC MATH M
[7]  
GOPALSMY K, 1992, STABILITY OSCILLATIO
[8]   THE FUNCTIONAL-RESPONSE OF PREDATORS - WORRIES ABOUT SCALE [J].
HANSKI, I .
TRENDS IN ECOLOGY & EVOLUTION, 1991, 6 (05) :141-142
[9]  
Henry D., 1993, LECT NOTES MATH, V840
[10]  
Holling C. S., 1965, Mem ent Soc Canada Ottawa, Vno. 45, P1