Cultivation-independent and cultivation-dependent metagenomes reveal genetic and enzymatic potential of microbial community involved in the degradation of a complex microbial polymer

被引:86
作者
Costa, Ohana Y. A. [1 ,2 ]
de Hollander, Mattias [1 ]
Pijl, Agata [1 ]
Liu, Binbin [3 ]
Kuramae, Eiko E. [1 ]
机构
[1] Netherlands Inst Ecol NIOO KNAW, Dept Microbial Ecol, Droevendaalsesteeg 10, NL-6708 PB Wageningen, Netherlands
[2] Leiden Univ, Inst Biol IBL, Leiden, Netherlands
[3] Chinese Acad Sci, Inst Genet & Dev Biol, Ctr Agr Resources Res, Shijiazhuang 050021, Hebei, Peoples R China
关键词
SOIL; DISCOVERY; SEQUENCE; GLYCOSYLTRANSFERASES; MICROORGANISMS; ASSIGNMENT; BACTERIA; GENOMES; TOOL;
D O I
10.1186/s40168-020-00836-7
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Background: Cultivation-independent methods, including metagenomics, are tools for the exploration and discovery of biotechnological compounds produced by microbes in natural environments. Glycoside hydrolases (GHs) enzymes are extremely desired and important in the industry of production for goods and biofuel and removal of problematic biofilms and exopolysaccharide (EPS). Biofilms and EPS are complex, requiring a wide range of enzymes for a complete degradation. The aim of this study was to identify potential GH microbial producers and GH genes with biotechnological potential, using EPS-complex structure (WH15EPS) of Acidobacteria Granulicella sp. strain WH15 as an enrichment factor, in cultivation-independent and cultivation-dependent methods. We performed stable isotope probing (SIP) combined with metagenomics on topsoil litter amended with WH15EPS and coupled solid culture-EPS amended medium with metagenomics. Results: SIP metagenome analysis of the soil litter demonstrated that phyla Proteobacteria, Actinobacteria, Acidobacteria, and Planctomycetes were the most abundant in WH15EPS amended and unamended treatments. The enrichment cultures in solid culture medium coupled to metagenomics demonstrated an enrichment in Proteobacteria, and the metagenome assembly of this enrichment cultures resulted in 4 metagenome-assembled genomes (MAGs) of microbes with low identity (42-86%) to known microorganisms. Among all carbohydrate-active enzymes (CAZymes) retrieved genes, glycoside transferase (GT) was the most abundant family, either in culture-independent or culture-based metagenome datasets. Within the glycoside hydrolases (GHs), GH13 was the most abundant family in both metagenome datasets. In the "heavy" fraction of the culture-independent metagenome SIP dataset, GH109 (alpha-N-acetylgalactosaminidases), GH117 (agarases), GH50 (agarases), GH32 (invertases and inulinases), GH17 (endoglucanases), and GH71 (mutanases) families were more abundant in comparison with the controls. Those GH families are affiliated to microorganism that are probably capable to degrade WH15EPS and potentially applicable for biofilm deconstruction. Subsequent in culture-based metagenome, the assembled 4 MAGs (unclassified Proteobacteria) also contained GH families of interest, involving mannosidases, lysozymes, galactosidases, and chitinases. Conclusions: We demonstrated that functional diversity induced by the presence of WH15EPS in both culture-independent and culture-dependent approaches was enriched in GHs, such as amylases and endoglucanases that could be applied in chemical, pharmaceutical, and food industrial sectors. Furthermore, WH15EPS may be used for the investigation and isolation of yet unknown taxa, such as unclassified Proteobacteria and Planctomycetes, increasing the number of current cultured bacterial representatives with potential biotechnological traits.
引用
收藏
页数:19
相关论文
共 88 条
  • [1] Allison DG, 2003, BIOFOULING, V19, P139, DOI [10.1080/0892701031000072190, 10.1038/nrmicro2415]
  • [2] Alneberg J, 2014, NAT METHODS, V11, P1144, DOI [10.1038/NMETH.3103, 10.1038/nmeth.3103]
  • [3] Atlas R. M., 2004, Handbook of microbiological media
  • [4] Active and total microbial communities in forest soil are largely different and highly stratified during decomposition
    Baldrian, Petr
    Kolarik, Miroslav
    Stursova, Martina
    Kopecky, Jan
    Valaskova, Vendula
    Vetrovsky, Tomaas
    Zifcakova, Lucia
    Snajdr, Jaroslav
    Ridl, Jakub
    Vlcek, Cestmir
    Voriskova, Jana
    [J]. ISME JOURNAL, 2012, 6 (02) : 248 - 258
  • [5] Discovery of two novel β-glucosidases from an Amazon soil metagenomic library
    Bergmann, Jessica C.
    Costa, Ohana Yonara A.
    Gladden, John M.
    Singer, Steven
    Heins, Richard
    D'haeseleer, Patrik
    Simmons, Blake A.
    Quirino, Betania F.
    [J]. FEMS MICROBIOLOGY LETTERS, 2014, 351 (02) : 147 - 155
  • [6] Metagenomics: novel enzymes from non-culturable microbes
    Berini, Francesca
    Casciello, Carmine
    Marcone, Giorgia Letizia
    Marinelli, Flavia
    [J]. FEMS MICROBIOLOGY LETTERS, 2017, 364 (21)
  • [7] Trimmomatic: a flexible trimmer for Illumina sequence data
    Bolger, Anthony M.
    Lohse, Marc
    Usadel, Bjoern
    [J]. BIOINFORMATICS, 2014, 30 (15) : 2114 - 2120
  • [8] Fast and sensitive protein alignment using DIAMOND
    Buchfink, Benjamin
    Xie, Chao
    Huson, Daniel H.
    [J]. NATURE METHODS, 2015, 12 (01) : 59 - 60
  • [9] Optimized medium culture for Acidobacteria subdivision 1 strains
    Campanharo, Joao Carlos
    Kielak, Anna Maria
    Luque Castellane, Tereza Cristina
    Kuramae, Eiko Eurya
    de Macedo Lemos, Eliana Gertrudes
    [J]. FEMS MICROBIOLOGY LETTERS, 2016, 363 (21)
  • [10] Improved protein-ligand binding affinity prediction by using a curvature-dependent surface-area model
    Cao, Yang
    Li, Lei
    [J]. BIOINFORMATICS, 2014, 30 (12) : 1674 - 1680