Fixed Point of Strong Duality Pseudocontractive Mappings and Applications

被引:17
作者
Liu, Baowei [1 ]
机构
[1] Cangzhou Normal Univ, Dept Math, Cangzhou 061001, Peoples R China
关键词
WEAK-CONVERGENCE; BANACH;
D O I
10.1155/2012/623625
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E be a smooth Banach space with the dual E*, an operator T : E -> E* is said to be alpha-strong duality pseudocontractive if < x - y, Tx - Ty > <= < x - y, Jx - Jy > - alpha parallel to Jx - Jy - (Tx - Ty)parallel to(2), for all x, y epsilon E, where alpha is a nonnegative constant. An element x epsilon E is called a duality fixed point of T if Tx = Jx. The purpose of this paper is to introduce the definition of alpha-strong duality pseudocontractive mappings and to study its fixed point problem and applications for operator equation and variational inequality problems.
引用
收藏
页数:7
相关论文
共 7 条
[1]   Weak convergence of orbits of nonlinear operators in reflexive Banach [J].
Butnariu, D ;
Reich, S ;
Zaslavski, AJ .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2003, 24 (5-6) :489-508
[2]  
Butnariu D., 2001, J APPL ANAL, V7, P151, DOI DOI 10.1515/JAA.2001.151
[3]   Weak convergence of a projection algorithm for variational inequalities in a Banach space [J].
Iiduka, Hideaki ;
Takahashi, Wataru .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (01) :668-679
[4]  
Takahashi W., 2000, Nonlinear functional analysis
[5]  
Takahashi W., 2000, TOTSU KAISEKI FUDOTE
[6]  
Takahashi Y, 2002, J NONLINEAR CONVEX A, V3, P267
[7]   Strong convergence theorems for monotone mappings and relatively weak nonexpansive mappings [J].
Zegeye, Habtu ;
Shahzad, Naseer .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (07) :2707-2716