Performance analysis of solid oxide fuel cell/piston engine hybrid system for aviation

被引:18
|
作者
Li, Chengjie [1 ]
Cheng, Kunlin [1 ]
Ma, Songsong [1 ]
Liu, He [1 ]
Ji, Zhixing [1 ]
Qin, Jiang [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
[2] Chongqing Res Inst Technol, Chongqing, Peoples R China
关键词
SOFC; Piston engine; Exergy analysis; Performance analysis; Hybrid power system; CELL; MODEL; OPTIMIZATION; SIMULATION;
D O I
10.1016/j.applthermaleng.2022.118797
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, the solid oxide fuel cell/piston engine hybrid power system for aviation is proposed, which combines the solid oxide fuel cell and the piston engine. Turbocharging, autothermal reforming and anode recirculation are used to solve the difficulties of hybrid power system in aviation. In order to obtain the thermodynamic performance and parameter influence law of the solid oxide fuel cell/piston engine hybrid power system, the hybrid power system is modeled. The power generation efficiency of the hybrid power system is 52.29%. The power generation efficiency of the hybrid power system decreases with the increase of flight altitude, increases with the increase of compressor pressure ratio, and increases first and then decreases with the increase of the fuel utilization of fuel cell and anode reflux rate. Exergy analyses was carried out on the hybrid power system to determine the location, degree and source of thermodynamic inefficiency (exergy destructions and exergy losses) in the system. The largest exergy destruction occurred in the autothermal reformer, which accounted for 33.57%, followed by the piston engine, which accounted for 22.17% of the total exergy losses of the system. This paper provides a new and efficient aviation powertrain solution.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] FUEL UTILIZATION EFFECTS ON SYSTEM EFFICIENCY AND SOLID OXIDE FUEL CELL PERFORMANCE IN GAS TURBINE HYBRID SYSTEMS
    Harun, Nor Farida
    Shadle, Lawrence
    Oryshchyn, Danylo
    Tucker, David
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2017, VOL 3, 2017,
  • [42] Performance Study of Hybrid Solid Oxide Fuel Cell-Gas Turbine Power System
    Zhao, Hongbin
    Liu, Xu
    ACHIEVEMENTS IN ENGINEERING MATERIALS, ENERGY, MANAGEMENT AND CONTROL BASED ON INFORMATION TECHNOLOGY, PTS 1 AND 2, 2011, 171-172 : 319 - 322
  • [43] Performance analysis of solid oxide fuel cell using reformed fuel
    Verma, J. K.
    Verma, A.
    Ghoshal, A. K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (22) : 9511 - 9518
  • [44] Solid Oxide Fuel Cell-Internal Combustion Engine Hybrid System for Ammonia-Fueled Locomotives
    Park, Minkyoung
    Choi, Wonjae
    Choi, Jaeheon
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2024, 48 (11) : 687 - 697
  • [45] System analysis of solid oxide fuel cell unit
    Chen, TP
    Wright, JD
    Krist, K
    PROCEEDINGS OF THE FIFTH INTERNATIONAL SYMPOSIUM ON SOLID OXIDE FUEL CELLS (SOFC-V), 1997, 97 (40): : 69 - 78
  • [46] Matching and performance analysis of a solid oxide fuel cell turbine-less hybrid electric propulsion system on aircraft
    Guo, Fafu
    Li, Chengjie
    Liu, He
    Cheng, Kunlin
    Qin, Jiang
    ENERGY, 2023, 263
  • [47] Thermo-environmental performance analysis of irreversible solid oxide fuel cell–Stirling heat engine
    Açıkkalp, Emin (eacikkalp@gmail.com), 1600, Taylor and Francis Ltd. (39):
  • [48] Exergy based performance analysis of a solid oxide fuel cell and steam injected gas turbine hybrid power system
    Motahar, Sadegh
    Alemrajabi, Ali Akbar
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (05) : 2396 - 2407
  • [49] Thermo-environmental performance analysis of irreversible solid oxide fuel cell - Stirling heat engine
    Acikkalp, Emin
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2018, 39 (07) : 751 - 758
  • [50] Overall scheme design of a closed solid oxide fuel cell hybrid engine for ships
    Ji, Zhixing
    Miao, Xing-Yuan
    ENERGY CONVERSION AND MANAGEMENT, 2024, 314