On the total curvature of curves in a Minkowski space

被引:3
|
作者
Borisenko, Alexander A. [1 ]
Tenenblat, Keti [2 ]
机构
[1] Kharkov Natl Karazin Univ, Geometry Dept, Math Mech Fac, UA-310077 Kharkov, Ukraine
[2] Univ Brasilia, Dept Matemat, Inst Ciencias Exatas, BR-71910900 Brasilia, DF, Brazil
关键词
HADAMARD MANIFOLDS; CONVEX-SETS; THEOREM; MILNOR; FARY;
D O I
10.1007/s11856-012-0010-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider simple closed curves in a Minkowski space. We give bounds of the total Minkowski curvature of the curve in terms of the total Euclidean curvature and of normal curvatures on the indicatrix (supposed to be a central symmetric hypersurface) of the Minkowski norm. Corollaries of this result provide analogues to Fenchel and Fary-Milnor theorems. We also give an upper bound of the Minkowski length of a simple closed curve contained in a Minkowski ball of radius R, in terms of the total Minkowski curvature and of normal curvatures on the indicatrix. Whenever the Minkowski space is Euclidean our results reduce to the classical ones.
引用
收藏
页码:755 / 769
页数:15
相关论文
共 50 条