Quantum Chemical Topology: Knowledgeable Atoms in Peptides

被引:18
作者
Popelier, Paul L. A. [1 ]
机构
[1] Manchester Interdisciplinary Bioctr MIB, Manchester M1 7DN, Lancs, England
来源
THEORY AND APPLICATIONS IN COMPUTATIONAL CHEMISTRY: THE FIRST DECADE OF THE SECOND MILLENNIUM | 2012年 / 1456卷
关键词
Quantum Chemical Topology; Peptides; Amino Acids; Polarization; Multipole Moments; Electron Density; Kriging; Machine Learning; POLARIZABLE MULTIPOLAR ELECTROSTATICS; NATURAL AMINO-ACIDS; FORCE-FIELDS; MOLECULES; BIOMOLECULES; CHARMM; AMBER; NMR;
D O I
10.1063/1.4732788
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The need to improve atomistic biomolecular force fields remains acute. Fortunately, the abundance of contemporary computing power enables an overhaul of the architecture of current force fields, which typically base their electrostatics on fixed atomic partial charges. We discuss the principles behind the electrostatics of a more realistic force field under construction, called QCTFF. At the heart of QCTFF lies the so-called topological atom, which is a malleable box, whose shape and electrostatics changes in response to a changing environment. This response is captured by a machine learning method called Kriging. Kriging directly predicts each multipole moment of a given atom (i.e. the output) from the coordinates of the nuclei surrounding this atom (i.e. the input). This procedure yields accurate interatomic electrostatic energies, which form the basis for future-proof progress in force field design.
引用
收藏
页码:261 / 268
页数:8
相关论文
共 37 条
[1]   PRINCIPLE OF STATIONARY ACTION AND THE DEFINITION OF A PROPER OPEN SYSTEM [J].
BADER, RFW .
PHYSICAL REVIEW B, 1994, 49 (19) :13348-13356
[2]   ATOMS IN MOLECULES [J].
BADER, RFW .
ACCOUNTS OF CHEMICAL RESEARCH, 1985, 18 (01) :9-15
[3]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[4]  
Cressie N., 1993, Statistics for Spatial Data, DOI [10.1002/9781119115151, DOI 10.1002/9781119115151]
[5]   Interpolating moving least-squares methods for fitting potential energy surfaces: A strategy for efficient automatic data point placement in high dimensions [J].
Dawes, Richard ;
Thompson, Donald L. ;
Wagner, Albert F. ;
Minkoff, Michael .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (08)
[6]   Evaluation of charge penetration between distributed multipolar expansions [J].
Freitag, MA ;
Gordon, MS ;
Jensen, JH ;
Stevens, WJ .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (17) :7300-7306
[7]   Potential Energy Surfaces Fitted by Artificial Neural Networks [J].
Handley, Chris M. ;
Popelier, Paul L. A. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (10) :3371-3383
[8]   Optimal construction of a fast and accurate polarisable water potential based on multipole moments trained by machine learning [J].
Handley, Chris M. ;
Hawe, Glenn I. ;
Kell, Douglas B. ;
Popelier, Paul L. A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (30) :6365-6376
[9]   Comparison of multiple amber force fields and development of improved protein backbone parameters [J].
Hornak, Viktor ;
Abel, Robert ;
Okur, Asim ;
Strockbine, Bentley ;
Roitberg, Adrian ;
Simmerling, Carlos .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2006, 65 (03) :712-725
[10]  
Jensen F., 2017, Introduction to Computational Chemistry