OSCILLATION CRITERIA FOR A NONLINEAR CONFORMABLE FRACTIONAL DIFFERENTIAL SYSTEM WITH A FORCING TERM

被引:0
作者
Ogunbanjo, A. M. [1 ]
Arawomo, P. O. [1 ]
机构
[1] Univ Ibadan, Dept Math, Ibadan, Nigeria
来源
ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES | 2020年 / 22卷 / 02期
关键词
oscillation; nonlinear system; forcing term; conformable fractional differential equation;
D O I
10.17654/DE022020109
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We employ the averaging functions, conformable fractional derivative and some inequalities to establish new oscillatory behaviour of the solutions of fractional differential system with a forcing term. The results obtained here extend and improve on some existing results. Examples are also given to show the validity of our results.
引用
收藏
页码:109 / 119
页数:11
相关论文
共 18 条
[1]  
Abdeljawad T., 2014, CONFORMABLE FRACTION
[2]  
Agarwal R.P., 2004, Nonoscillation and oscillation: Theory for functional differential equations, Monographs and
[3]  
Agarwal R. P., 2002, Oscillation Theory for Second Order Dynamic Equations
[4]  
ERBE L.H., 1995, OSCILLATION THEORY F
[5]  
Feng Q., IAENG INT J APPL MAT, V43, P154
[6]  
Feng Qinghua, 2013, ELECT J DIFFERENTIAL, V169
[7]   A new definition of fractional derivative [J].
Khalil, R. ;
Al Horani, M. ;
Yousef, A. ;
Sababheh, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 264 :65-70
[8]   On the oscillation of nonlinear two-dimensional differential systems [J].
Kordonis, IGE ;
Philos, CG .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (06) :1661-1667
[9]   Classification schemes for positive solutions of nonlinear differential systems [J].
Li, WT .
MATHEMATICAL AND COMPUTER MODELLING, 2002, 36 (4-5) :411-418
[10]  
Lomtatidze A., 1999, GEORGIAN MATH J, V6, P285