Sensitive colorimetric visualization of dihydronicotinamide adenine dinucleotide based on anti-aggregation of gold nanoparticles via boronic acid-diol binding

被引:39
作者
Liu, Shufeng [2 ]
Du, Zongfeng [2 ]
Li, Peng [2 ]
Li, Feng [1 ,2 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Environm & Safety Engn, Qingdao 266042, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Chem & Mol Engn, State Key Lab Base Ecochem Engn, Qingdao 266042, Peoples R China
基金
中国国家自然科学基金;
关键词
Colorimetric; Gold nanoparticles; 4-Mercaptophenylboronic acid; Dihydronicotinamide adenine dinucleotide; SINGLE-CELL; NADH; NICOTINAMIDE; OXIDATION; NAD(+); BORATE;
D O I
10.1016/j.bios.2012.02.040
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A facile, highly sensitive colorimetric strategy for dihydronicotinamide adenine dinucleotide (NADH) detection is proposed based on anti-aggregation of gold nanoparticles (AuNPs) via boronic acid-diol binding chemistry. The aggregation agent, 4-mercaptophenylboronic acid (MPBA), has specific affinity for AuNPs through Au-S interaction, leading to the aggregation of AuNPs by self-dehydration condensation at a certain concentration, which is responsible for a visible color change of AuNPs from wine red to blue. With the addition of NADH. MPBA would prefer reacting with NADH to form stable borate ester via boronic acid-diol binding dependent on the pH and solvent, revealing an obvious color change from blue to red with increasing the concentration of NADH. The anti-aggregation effect of NADH on AuNPs was seen by the naked eye and monitored by UV-vis extinction spectra. The linear range of the colorimetric sensor for NADH is from 8.0 x 10(-9) M to 8.0 x 10(-6) M, with a low detection limit of 2.0 nM. The as-established colorimetric strategy opened a new avenue for NADH determination. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:443 / 446
页数:4
相关论文
共 32 条
[1]   Hydrogen-Bonding Recognition-Induced Color Change of Gold Nanoparticles for Visual Detection of Melamine in Raw Milk and Infant Formula [J].
Ai, Kelong ;
Liu, Yanlan ;
Lu, Lehui .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (27) :9496-+
[2]   Organization of 'nanocrystal molecules' using DNA [J].
Alivisatos, AP ;
Johnsson, KP ;
Peng, XG ;
Wilson, TE ;
Loweth, CJ ;
Bruchez, MP ;
Schultz, PG .
NATURE, 1996, 382 (6592) :609-611
[3]   Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study [J].
Banks, CE ;
Compton, RG .
ANALYST, 2005, 130 (09) :1232-1239
[4]   Oxidation of beta-nicotinamide adenine dinucleotide (NADH) at poly(aniline)-coated electrodes [J].
Bartlett, PN ;
Birkin, PR ;
Wallace, ENK .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1997, 93 (10) :1951-1960
[5]   ACTIVATION OF PROTEIN KINASE BY PHYSIOLOGICAL CONCENTRATIONS OF CYCLIC-AMP [J].
BEAVO, JA ;
BECHTEL, PJ ;
KREBS, EG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1974, 71 (09) :3580-3583
[6]   A METHOD FOR THE DETERMINATION OF CHANGES OF GLYCOLYTIC METABOLITES IN YEAST ON A SUBSECOND TIME SCALE USING EXTRACTION AT NEUTRAL PH [J].
DEKONING, W ;
VANDAM, K .
ANALYTICAL BIOCHEMISTRY, 1992, 204 (01) :118-123
[7]   Reactivity of poly(anilineboronic acid) with NAD+ and NADH [J].
Deore, LA ;
Freund, MS .
CHEMISTRY OF MATERIALS, 2005, 17 (11) :2918-2923
[8]   Progress in boronic acid-based fluorescent glucose sensors [J].
Fang, H ;
Kaur, G ;
Wang, BH .
JOURNAL OF FLUORESCENCE, 2004, 14 (05) :481-489
[9]   PREPARATION AND CHARACTERIZATION OF AU COLLOID MONOLAYERS [J].
GRABAR, KC ;
FREEMAN, RG ;
HOMMER, MB ;
NATAN, MJ .
ANALYTICAL CHEMISTRY, 1995, 67 (04) :735-743
[10]   A STUDY OF THE PRODUCTS FORMED IN THE ELECTROCHEMICAL REDUCTION OF NICOTINAMIDE-ADENINE-DINUCLEOTIDE [J].
JAEGFELDT, H .
BIOELECTROCHEMISTRY AND BIOENERGETICS, 1981, 8 (03) :355-370