Blind backscattering experimental data collected in the field and an approximately globally convergent inverse algorithm

被引:40
作者
Kuzhuget, Andrey V. [2 ]
Beilina, Larisa [3 ,4 ]
Klibanov, Michael V. [1 ]
Sullivan, Anders [5 ]
Lam Nguyen [5 ]
Fiddy, Michael A. [6 ]
机构
[1] Univ N Carolina, Dept Math & Stat, UNCC ChalmersGU Team, Charlotte, NC 28223 USA
[2] Morgan Stanley & Co Inc, UNCC ChalmersGU Team, New York, NY 10036 USA
[3] Chalmers Univ Technol, Dept Math Sci, UNCC ChalmersGU Team, SE-42196 Gothenburg, Sweden
[4] Gothenburg Univ, UNCC ChalmersGU Team, SE-42196 Gothenburg, Sweden
[5] USA, Res Lab, ARL Team, Adelphy, MD 20783 USA
[6] Univ N Carolina, Optoelect Ctr, UNCC ChalmersGU Team, Charlotte, NC 28223 USA
基金
瑞典研究理事会;
关键词
NUMERICAL-METHOD; SCATTERING PROBLEM; RECONSTRUCTION;
D O I
10.1088/0266-5611/28/9/095007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An approximately globally convergent numerical method for a 1D coefficient inverse problem for a hyperbolic PDE is applied to image dielectric constants of targets from blind experimental data. The data were collected in the field by the Forward Looking Radar of the US Army Research Laboratory. A posteriori analysis has revealed that computed and tabulated values of dielectric constants are in good agreement. Convergence analysis is presented.
引用
收藏
页数:33
相关论文
共 45 条
[1]   Solution of the three-dimensional acoustic inverse scattering problem. The modified Novikov algorithm [J].
Alekseenko, N. V. ;
Burov, V. A. ;
Rumyantseva, O. D. .
ACOUSTICAL PHYSICS, 2008, 54 (03) :407-419
[2]  
[Anonymous], 2000, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light
[3]  
[Anonymous], 1968, LINEAR QUASILINEAR E
[4]  
[Anonymous], 2000, MATH ITS APPL
[5]  
Bateman H., 1954, TABLES INTEGRAL TRAN
[6]   A posteriori error estimation in computational inverse scattering [J].
Beilina, L ;
Johnson, C .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (01) :23-35
[7]  
Beilina L, 2011, J MATH SCI, V172, P449
[8]  
Beilina L, 2001, NUMERICAL MATH ADV A, P4
[9]  
Beilina L, 2012, COMPLEX VAR IN PRESS
[10]  
Beilina L., 2010, J MATH SCI, V167, P279, DOI DOI 10.1007/S10958-010-9921-1