Innovative deep learning models for EEG-based vigilance detection

被引:33
|
作者
Khessiba, Souhir [1 ]
Blaiech, Ahmed Ghazi [1 ,2 ]
Ben Khalifa, Khaled [1 ,2 ]
Ben Abdallah, Asma [1 ,3 ]
Bedoui, Mohamed Hedi [1 ]
机构
[1] Univ Monastir, Fac Med Monastir, Lab Technol & Imagerie Med, Monastir 5019, Tunisia
[2] Univ Sousse, Inst Super Sci Appl & Technol Sousse, Sousse 4003, Tunisia
[3] Univ Monastir, Inst Super Informat & Math, Monastir 5019, Tunisia
来源
NEURAL COMPUTING & APPLICATIONS | 2021年 / 33卷 / 12期
关键词
Vigilance; Deep learning; EEG signal; Classification; RECOGNITION; PREDICTION; SIGNALS;
D O I
10.1007/s00521-020-05467-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electroencephalography (EEG) is one of the most signals used for studying and demonstrating the electrical activity of the brain due to the absence of side effects, its noninvasive nature and its well temporal resolution. Indeed, it provides real-time information, so it can be easily suitable for predicting drivers' vigilance states. The classification of these states through this signal requires sophisticated approaches in order to achieve the best prediction performance. Furthermore, deep learning (DL) approaches have shown a good performance in learning the high-level features of the EEG signal and in resolving classification issues. In this paper, we will predict individuals' states of vigilance based on the study of their brain activity by analyzing EEG signals using DL architectures. In fact, we propose two types of networks: (i) a 1D-UNet model, which is composed only of deep one-dimensional convolutional neural network (1D-CNN) layers and (ii) 1D-UNet-long short-term memory (1D-UNet-LSTM) that combines the proposed 1D-UNet architecture with the LSTM recurrent model. The experimental results reveal that the suggested models can stabilize the training model, well recognize the subject vigilance states and compete with the state of art on multiple performance metrics. The per-class average of precision and recall can be, respectively, up to 86% with 1D-UNet and 85% with 1D-UNet-LSTM, hence the effectiveness of the proposed methods. In order to complete our virtual prototyping and to get a real evaluation of our alert equipment, these proposed DL models are implemented also on a Raspberry Pi3 device allowing measuring the execution time necessary for predicting the state vigilance in real time.
引用
收藏
页码:6921 / 6937
页数:17
相关论文
共 50 条
  • [21] VIGNet: A Deep Convolutional Neural Network for EEG-based Driver Vigilance Estimation
    Ko, Wonjun
    Oh, Kwanseok
    Jeon, Eunjin
    Suk, Heung-Il
    2020 8TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2020, : 34 - 36
  • [22] Deep Learning for EEG-based Emotion Recognition: A Survey
    Li J.-Y.
    Du X.-B.
    Zhu Z.-L.
    Deng X.-M.
    Ma C.-X.
    Wang H.-A.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (01): : 255 - 276
  • [23] Deep Learning for EEG-Based Preference Classification in Neuromarketing
    Aldayel, Mashael
    Ykhlef, Mourad
    Al-Nafjan, Abeer
    APPLIED SCIENCES-BASEL, 2020, 10 (04):
  • [25] An evaluation of transfer learning models in EEG-based authentication
    Yap, Hui Yen
    Choo, Yun-Huoy
    Mohd Yusoh, Zeratul Izzah
    Khoh, Wee How
    BRAIN INFORMATICS, 2023, 10 (01)
  • [26] EEG-based System Using Deep Learning and Attention Mechanism for Driver Drowsiness Detection
    Zhu, Miankuan
    Li, Haobo
    Chen, Jiangfan
    Kamezaki, Mitsuhiro
    Zhang, Zutao
    Hua, Zexi
    Sugano, Shigeki
    2021 IEEE INTELLIGENT VEHICLES SYMPOSIUM WORKSHOPS (IV WORKSHOPS), 2021, : 280 - 286
  • [27] Deep Multi-View Feature Learning for EEG-Based Epileptic Seizure Detection
    Tian, Xiaobin
    Deng, Zhaohong
    Ying, Wenhao
    Choi, Kup-Sze
    Wu, Dongrui
    Qin, Bin
    Wang, Jun
    Shen, Hongbin
    Wang, Shitong
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2019, 27 (10) : 1962 - 1972
  • [28] Channel-annotated deep learning for enhanced interpretability in EEG-based seizure detection
    Wong, Sheng
    Simmons, Anj
    Rivera-Villicana, Jessica
    Barnett, Scott
    Sivathamboo, Shobi
    Perucca, Piero
    Ge, Zongyuan
    Kwan, Patrick
    Kuhlmann, Levin
    O'Brien, Terence J.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 103
  • [29] From Sound Perception to Automatic Detection of Schizophrenia: An EEG-Based Deep Learning Approach
    Barros, Carla
    Roach, Brian
    Ford, Judith M.
    Pinheiro, Ana P.
    Silva, Carlos A.
    FRONTIERS IN PSYCHIATRY, 2022, 12
  • [30] Confusion State Induction and EEG-based Detection in Learning
    Zhou, Yun
    Xu, Tao
    Li, Shiqian
    Li, Shaoqi
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 3290 - 3293