Innovative deep learning models for EEG-based vigilance detection

被引:33
|
作者
Khessiba, Souhir [1 ]
Blaiech, Ahmed Ghazi [1 ,2 ]
Ben Khalifa, Khaled [1 ,2 ]
Ben Abdallah, Asma [1 ,3 ]
Bedoui, Mohamed Hedi [1 ]
机构
[1] Univ Monastir, Fac Med Monastir, Lab Technol & Imagerie Med, Monastir 5019, Tunisia
[2] Univ Sousse, Inst Super Sci Appl & Technol Sousse, Sousse 4003, Tunisia
[3] Univ Monastir, Inst Super Informat & Math, Monastir 5019, Tunisia
来源
NEURAL COMPUTING & APPLICATIONS | 2021年 / 33卷 / 12期
关键词
Vigilance; Deep learning; EEG signal; Classification; RECOGNITION; PREDICTION; SIGNALS;
D O I
10.1007/s00521-020-05467-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electroencephalography (EEG) is one of the most signals used for studying and demonstrating the electrical activity of the brain due to the absence of side effects, its noninvasive nature and its well temporal resolution. Indeed, it provides real-time information, so it can be easily suitable for predicting drivers' vigilance states. The classification of these states through this signal requires sophisticated approaches in order to achieve the best prediction performance. Furthermore, deep learning (DL) approaches have shown a good performance in learning the high-level features of the EEG signal and in resolving classification issues. In this paper, we will predict individuals' states of vigilance based on the study of their brain activity by analyzing EEG signals using DL architectures. In fact, we propose two types of networks: (i) a 1D-UNet model, which is composed only of deep one-dimensional convolutional neural network (1D-CNN) layers and (ii) 1D-UNet-long short-term memory (1D-UNet-LSTM) that combines the proposed 1D-UNet architecture with the LSTM recurrent model. The experimental results reveal that the suggested models can stabilize the training model, well recognize the subject vigilance states and compete with the state of art on multiple performance metrics. The per-class average of precision and recall can be, respectively, up to 86% with 1D-UNet and 85% with 1D-UNet-LSTM, hence the effectiveness of the proposed methods. In order to complete our virtual prototyping and to get a real evaluation of our alert equipment, these proposed DL models are implemented also on a Raspberry Pi3 device allowing measuring the execution time necessary for predicting the state vigilance in real time.
引用
收藏
页码:6921 / 6937
页数:17
相关论文
共 50 条
  • [1] Innovative deep learning models for EEG-based vigilance detection
    Souhir Khessiba
    Ahmed Ghazi Blaiech
    Khaled Ben Khalifa
    Asma Ben Abdallah
    Mohamed Hédi Bedoui
    Neural Computing and Applications, 2021, 33 : 6921 - 6937
  • [2] Correction to: Innovative deep learning models for EEG-based vigilance detection
    Souhir Khessiba
    Ahmed Ghazi Blaiech
    Khaled Ben Khalifa
    Asma Ben Abdallah
    Mohamed Hédi Bedoui
    Neural Computing and Applications, 2022, 34 : 819 - 819
  • [3] Hyperparameter Optimization of Deep Learning Models for EEG-Based Vigilance Detection
    Khessiba, Souhir
    Blaiech, Ahmed Ghazi
    Manzanera, Antoine
    Ben Khalifa, Khaled
    Ben Abdallah, Asma
    Bedoui, Mohamed Hedi
    ADVANCES IN COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2022, 2022, 1653 : 200 - 210
  • [4] Innovative deep learning models for EEG-based vigilance detection (vol 33, pg 6921, 2021)
    Khessiba, Souhir
    Blaiech, Ahmed Ghazi
    Khalifa, Khaled Ben
    Abdallah, Asma Ben
    Bedoui, Mohamed Hedi
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (01): : 819 - 819
  • [5] Feature Selection of Deep Learning Models for EEG-Based RSVP Target Detection
    Chen, Jingxia
    Mao, Zijing
    Zheng, Ru
    Huang, Yufei
    He, Lifeng
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2019, E102D (04) : 836 - 844
  • [6] EEG-Based Emotion Estimation with Different Deep Learning Models
    Alakus, Talha Burak
    Turkoglu, Ibrahim
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2019, : 33 - 37
  • [7] An Investigation of Deep Learning Models for EEG-Based Emotion Recognition
    Zhang, Yaqing
    Chen, Jinling
    Tan, Jen Hong
    Chen, Yuxuan
    Chen, Yunyi
    Li, Dihan
    Yang, Lei
    Su, Jian
    Huang, Xin
    Che, Wenliang
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [8] EEG-based vigilance estimation using extreme learning machines
    Shi, Li-Chen
    Lu, Bao-Liang
    NEUROCOMPUTING, 2013, 102 : 135 - 143
  • [9] Deep learning models as learners for EEG-based functional brain networks
    Yang, Yuxuan
    Li, Yanli
    JOURNAL OF NEURAL ENGINEERING, 2025, 22 (02)
  • [10] EEG-based deep learning model for the automatic detection of clinical depression
    Thoduparambil, Pristy Paul
    Dominic, Anna
    Varghese, Surekha Mariam
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2020, 43 (04) : 1349 - 1360