A Method for Predicting the Remaining Life of Rolling Bearings Based on Multi-Scale Feature Extraction and Attention Mechanism

被引:11
|
作者
Jiang, Changhong [1 ]
Liu, Xinyu [1 ]
Liu, Yizheng [2 ]
Xie, Mujun [1 ]
Liang, Chao [1 ]
Wang, Qiming [1 ]
机构
[1] Changchun Univ Technol, Sch Elect & Elect Engn, Changchun 130000, Peoples R China
[2] Jilin Prov Dengxi Technol Co Ltd, Changchun 130022, Peoples R China
关键词
rolling bearing; residual life prediction; multi-scale feature extraction; attention mechanism; CONVOLUTIONAL NEURAL-NETWORK; RECOGNITION;
D O I
10.3390/electronics11213616
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In response to the problems of difficult identification of degradation stage start points and inadequate extraction of degradation features in the current rolling bearing remaining life prediction method, a rolling bearing remaining life prediction method based on multi-scale feature extraction and attention mechanism is proposed. Firstly, this paper takes the normalized bearing vibration signal as input and adopts a quadratic function as the RUL prediction label, avoiding identifying the degradation stage start point. Secondly, the spatial and temporal features of the bearing vibration signal are extracted using the dilated convolutional neural network and LSTM network, respectively, and the channel attention mechanism is used to assign weights to each degradation feature to effectively use multi-scale information. Finally, the mapping of bearing degradation features to remaining life labels is achieved through a fully connected layer for the RUL prediction of bearings. The proposed method is validated using the PHM 2012 Challenge bearing dataset, and the experimental results show that the predictive performance of the proposed method is superior to that of other RUL prediction methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Remaining Useful Life Prediction of Bearings Based on Multi-head Self-attention Mechanism, Multi-scale Temporal Convolutional Network and Convolutional Neural Network
    Wei, Hao
    Gu, Yu
    Zhang, Qinghua
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 3027 - 3032
  • [42] Multi-scale hand segmentation method based on attention mechanism
    Zhou, Wenqing
    Dai, Sumin
    Wang, Yangpin
    Wang, Wenrun
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2024, 39 (11) : 1506 - 1518
  • [43] Multi-Scale CNN based on Attention Mechanism for Rolling Bearing Fault Diagnosis
    Hao, Yijia
    Wang, Huan
    Liu, Zhiliang
    Han, Haoran
    2020 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ADVANCED RELIABILITY AND MAINTENANCE MODELING (APARM), 2020,
  • [44] Multi-scale deep neural network approach with attention mechanism for remaining useful life estimation
    Kara, Ahmet
    COMPUTERS & INDUSTRIAL ENGINEERING, 2022, 169
  • [45] A Study on a Remote Sensing Image Classification Method Incorporating Multi-scale Feature Extraction and Channel Attention Mechanism
    Hu, Juan
    Du, Xinran
    Wang, Hanyang
    Jin, Ting
    Yang, Houqun
    ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT I, 2022, 13338 : 524 - 536
  • [46] Fault feature extraction for rolling element bearings based on multi-scale morphological filter and frequency-weighted energy operator
    Zhu, Danchen
    Zhang, Yongxiang
    Zhu, Qunwei
    JOURNAL OF VIBROENGINEERING, 2018, 20 (08) : 2892 - 2907
  • [47] A Method for Remaining Useful Life Prediction and Uncertainty Quantification of Rolling Bearings Based on Fault Feature Gain
    Yang, Ningning
    Zhang, Wei
    Zhang, Jingqi
    Wang, Ke
    Su, Yin
    Liu, Yunpeng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [48] An improved one-stage pedestrian detection method based on multi-scale attention feature extraction
    Jun Ma
    Honglin Wan
    Junxia Wang
    Hao Xia
    Chengjie Bai
    Journal of Real-Time Image Processing, 2021, 18 : 1965 - 1978
  • [49] Remaining useful life prediction based on parallel multi-scale feature fusion network
    Yin, Yuyan
    Tian, Jie
    Liu, Xinfeng
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024,
  • [50] An improved one-stage pedestrian detection method based on multi-scale attention feature extraction
    Ma, Jun
    Wan, Honglin
    Wang, Junxia
    Xia, Hao
    Bai, Chengjie
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2021, 18 (06) : 1965 - 1978