New Insights into the Binding and Catalytic Mechanisms of Bacillus thuringiensis Lactonase: Insights into B-thuringiensis AiiA Mechanism

被引:8
作者
Charendoff, Marc N. [1 ]
Shah, Halie P. [1 ]
Briggs, James M. [1 ]
机构
[1] Univ Houston, Dept Biol & Biochem, Houston, TX 77204 USA
来源
PLOS ONE | 2013年 / 8卷 / 09期
关键词
PSEUDOMONAS-AERUGINOSA; MOLECULAR-DYNAMICS; QUORUM; PREDICTION; RATIONALIZATION; SIMULATIONS; HYDROLYSIS; DIFFUSION; VALUES; WATER;
D O I
10.1371/journal.pone.0075395
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The lactonase enzyme (AiiA) produced by Bacillus thuringiensis serves to degrade autoinducer-1 (AI-1) signaling molecules in what is an evolved mechanism by which to compete with other bacteria. Bioassays have been previously performed to determine whether the AI-1 aliphatic tail lengths have any effect on AiiA's bioactivity, however, data to date are conflicting. Additionally, specific residue contributions to the catalytic activity of AiiA provide for some interesting questions. For example, it has been proposed that Y194 serves to provide an oxyanion hole to AI-1 which is curious given the fact the substrate spans two Zn(2+) ions. These ions might conceivably provide enough charge to promote both ligand stability and the carbonyl activation necessary to drive a nucleophilic attack. To investigate these questions, multiple molecular dynamics simulations were performed across a family of seven acylated homoserine lactones (AHL) along with their associated intermediate and product states. Distance analyses and interaction energy analyses were performed to investigate current bioassay data. Our simulations are consistent with experimental studies showing that AiiA degrades AHLs in a tail length independent manner. However, the presence of the tail is required for activity. Also, the putative oxyanion hole function of Y194 toward the substrate is not observed in any of the reactant or product state simulation trajectories, but does seem to show efficacy in stabilizing the intermediate state. Last, we argue through ionization state analyses, that the proton shuttling necessary for catalytic activity might be mediated by both water and substrate-based intra-molecular proton transfer. Based on this argument, an alternate catalytic mechanism is proposed.
引用
收藏
页数:16
相关论文
共 44 条
  • [1] H++3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations
    Anandakrishnan, Ramu
    Aguilar, Boris
    Onufriev, Alexey V.
    [J]. NUCLEIC ACIDS RESEARCH, 2012, 40 (W1) : W537 - W541
  • [2] [Anonymous], 2006, SPART 06 MAC
  • [3] [Anonymous], 2005, ENZYMES
  • [4] Antosiewicz J, 1996, J COMPUT CHEM, V17, P1633, DOI 10.1002/(SICI)1096-987X(19961115)17:14<1633::AID-JCC5>3.0.CO
  • [5] 2-M
  • [6] PREDICTION OF PH-DEPENDENT PROPERTIES OF PROTEINS
    ANTOSIEWICZ, J
    MCCAMMON, JA
    GILSON, MK
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1994, 238 (03) : 415 - 436
  • [7] Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase
    Aubert, SD
    Li, YC
    Raushel, FM
    [J]. BIOCHEMISTRY, 2004, 43 (19) : 5707 - 5715
  • [8] Very fast prediction and rationalization of pKa values for protein-ligand complexes
    Bas, Delphine C.
    Rogers, David M.
    Jensen, Jan H.
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2008, 73 (03) : 765 - 783
  • [9] MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH
    BERENDSEN, HJC
    POSTMA, JPM
    VANGUNSTEREN, WF
    DINOLA, A
    HAAK, JR
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) : 3684 - 3690
  • [10] Motion of the Zinc Ions in Catalysis by a Dizinc Metallo-β-Lactamase
    Breece, Robert M.
    Hu, Zhenxin
    Bennett, Brian
    Crowder, Michael W.
    Tierney, David L.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (33) : 11642 - +