Tying Knots in Light Fields

被引:145
作者
Kedia, Hridesh [1 ,2 ]
Bialynicki-Birula, Iwo [3 ]
Peralta-Salas, Daniel [4 ]
Irvine, William T. M. [1 ,2 ]
机构
[1] Univ Chicago, Dept Phys, Chicago, IL 60605 USA
[2] Univ Chicago, James Franck Inst, Chicago, IL 60605 USA
[3] Polish Acad Sci, Ctr Theoret Phys, PL-02668 Warsaw, Poland
[4] CSIC, Inst Ciencias Matemat, E-28049 Madrid, Spain
关键词
MAXWELL EQUATIONS; VORTEX LINES; TURBULENCE; MECHANICS; LINKS;
D O I
10.1103/PhysRevLett.111.150404
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct analytically, a new family of null solutions to Maxwell's equations in free space whose field lines encode all torus knots and links. The evolution of these null fields, analogous to a compressible flow along the Poynting vector that is shear free, preserves the topology of the knots and links. Our approach combines the construction of null fields with complex polynomials on S-3. We examine and illustrate the geometry and evolution of the solutions, making manifest the structure of nested knotted tori filled by the field lines.
引用
收藏
页数:5
相关论文
共 36 条
[31]  
Thomson W., 1867, PHILOS MAG, V34, P15, DOI [10.1080/14786446708639836, DOI 10.1080/14786446708639836]
[32]   Reconfigurable Knots and Links in Chiral Nematic Colloids [J].
Tkalec, Uros ;
Ravnik, Miha ;
Copar, Simon ;
Zumer, Slobodan ;
Musevic, Igor .
SCIENCE, 2011, 333 (6038) :62-65
[34]   The Hopf fibration - seven times in physics [J].
Urbantke, HK .
JOURNAL OF GEOMETRY AND PHYSICS, 2003, 46 (02) :125-150
[35]   QUANTUM-FIELD THEORY AND THE JONES POLYNOMIAL [J].
WITTEN, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (03) :351-399
[36]   KNOT-THEORY AND STATISTICAL-MECHANICS [J].
WU, FY .
REVIEWS OF MODERN PHYSICS, 1992, 64 (04) :1099-1131