Tying Knots in Light Fields

被引:145
作者
Kedia, Hridesh [1 ,2 ]
Bialynicki-Birula, Iwo [3 ]
Peralta-Salas, Daniel [4 ]
Irvine, William T. M. [1 ,2 ]
机构
[1] Univ Chicago, Dept Phys, Chicago, IL 60605 USA
[2] Univ Chicago, James Franck Inst, Chicago, IL 60605 USA
[3] Polish Acad Sci, Ctr Theoret Phys, PL-02668 Warsaw, Poland
[4] CSIC, Inst Ciencias Matemat, E-28049 Madrid, Spain
关键词
MAXWELL EQUATIONS; VORTEX LINES; TURBULENCE; MECHANICS; LINKS;
D O I
10.1103/PhysRevLett.111.150404
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct analytically, a new family of null solutions to Maxwell's equations in free space whose field lines encode all torus knots and links. The evolution of these null fields, analogous to a compressible flow along the Poynting vector that is shear free, preserves the topology of the knots and links. Our approach combines the construction of null fields with complex polynomials on S-3. We examine and illustrate the geometry and evolution of the solutions, making manifest the structure of nested knotted tori filled by the field lines.
引用
收藏
页数:5
相关论文
共 36 条
[11]   Knots and links in steady solutions of the Euler equation [J].
Enciso, Alberto ;
Peralta-Salas, Daniel .
ANNALS OF MATHEMATICS, 2012, 175 (01) :345-367
[12]   Stable knot-like structures in classical field theory [J].
Faddeev, L ;
Niemi, AJ .
NATURE, 1997, 387 (6628) :58-61
[13]   BATEMAN ELECTROMAGNETIC-WAVES [J].
HOGAN, PA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1984, 396 (1810) :199-204
[14]   Linked and knotted beams of light [J].
Irvine, William T. M. ;
Bouwmeester, Dirk .
NATURE PHYSICS, 2008, 4 (09) :716-720
[15]   Linked and knotted beams of light, conservation of helicity and the flow of null electromagnetic fields [J].
Irvine, William T. M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (38)
[16]   Knots in a spinor Bose-Einstein condensate [J].
Kawaguchi, Yuki ;
Nitta, Muneto ;
Ueda, Masahito .
PHYSICAL REVIEW LETTERS, 2008, 100 (18)
[17]  
Kedia H., IN PRESS
[18]  
Kleckner D, 2013, NAT PHYS, V9, P253, DOI [10.1038/nphys2560, 10.1038/NPHYS2560]
[19]  
Milnor J., 1969, Singular points of complex hypersurfaces
[20]  
Moffatt H. K., 1969, J FLUID MECH, V35, P117, DOI DOI 10.1017/S0022112069000991