Tying Knots in Light Fields

被引:145
作者
Kedia, Hridesh [1 ,2 ]
Bialynicki-Birula, Iwo [3 ]
Peralta-Salas, Daniel [4 ]
Irvine, William T. M. [1 ,2 ]
机构
[1] Univ Chicago, Dept Phys, Chicago, IL 60605 USA
[2] Univ Chicago, James Franck Inst, Chicago, IL 60605 USA
[3] Polish Acad Sci, Ctr Theoret Phys, PL-02668 Warsaw, Poland
[4] CSIC, Inst Ciencias Matemat, E-28049 Madrid, Spain
关键词
MAXWELL EQUATIONS; VORTEX LINES; TURBULENCE; MECHANICS; LINKS;
D O I
10.1103/PhysRevLett.111.150404
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct analytically, a new family of null solutions to Maxwell's equations in free space whose field lines encode all torus knots and links. The evolution of these null fields, analogous to a compressible flow along the Poynting vector that is shear free, preserves the topology of the knots and links. Our approach combines the construction of null fields with complex polynomials on S-3. We examine and illustrate the geometry and evolution of the solutions, making manifest the structure of nested knotted tori filled by the field lines.
引用
收藏
页数:5
相关论文
共 36 条
[1]  
[Anonymous], 1915, MATH ANAL ELECT OPTI
[2]  
Arrayas M., ARXIV11061122V2
[3]   Hidden symmetry and knot solitons in a charged two-condensate Bose system [J].
Babaev, E ;
Faddeev, LD ;
Niemi, AJ .
PHYSICAL REVIEW B, 2002, 65 (10) :1-4
[4]   Dual neutral variables and knot solitons in triplet superconductors [J].
Babaev, E .
PHYSICAL REVIEW LETTERS, 2002, 88 (17) :4-177002
[5]   Non-Meissner electrodynamics and knotted solitons in two-component superconductors [J].
Babaev, Egor .
PHYSICAL REVIEW B, 2009, 79 (10)
[6]   Knots and unknots in superfluid turbulence [J].
Barenghi, Carlo F. .
MILAN JOURNAL OF MATHEMATICS, 2007, 75 (01) :177-196
[7]   Electromagnetic vortex lines riding atop null solutions of the Maxwell equations [J].
Bialynicki-Birula, I .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2004, 6 (05) :S181-S183
[8]   Photon wave function [J].
BialynickiBirula, I .
PROGRESS IN OPTICS, VOL XXXVI, 1996, 36 :245-294
[9]  
Brauner K., 1928, Abh. Math. Sem. Hambg, V6, P1, DOI [10.1007/BF02940600, DOI 10.1007/BF02940600]
[10]   Isolated optical vortex knots [J].
Dennis, Mark R. ;
King, Robert P. ;
Jack, Barry ;
O'Holleran, Kevin ;
Padgett, Miles J. .
NATURE PHYSICS, 2010, 6 (02) :118-121