GRID REFINEMENT IN THE CONSTRUCTION OF LYAPUNOV FUNCTIONS USING RADIAL BASIS FUNCTIONS

被引:6
作者
Mohammed, Najla [1 ]
Giesl, Peter [1 ]
机构
[1] Univ Sussex, Dept Math, Falmer BN1 9QH, E Sussex, England
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2015年 / 20卷 / 08期
基金
英国工程与自然科学研究理事会;
关键词
Lyapunov function; domain of attraction; mesh-free collocation; Radial Basis Function; Voronoi diagram; refinement; INTERPOLATION;
D O I
10.3934/dcdsb.2015.20.2453
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Lyapunov functions are a main tool to determine the domain of attraction of equilibria in dynamical systems. Recently, several methods have been presented to construct a Lyapunov function for a given system. In this paper, we improve the construction method for Lyapunov functions using Radial Basis Functions. We combine this method with a new grid refinement algorithm based on Voronoi diagrams. Starting with a coarse grid and applying the refinement algorithm, we thus manage to reduce the number of data points needed to construct Lyapunov functions. Finally, we give numerical examples to illustrate our algorithms.
引用
收藏
页码:2453 / 2476
页数:24
相关论文
共 50 条
  • [41] Cartesian grid methods using radial basis functions for solving Poisson, Helmholtz, and diffusion-convection equations
    Chantasiriwan, S
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2004, 28 (12) : 1417 - 1425
  • [42] LYAPUNOV-BASED STABILITY AND CONSTRUCTION OF LYAPUNOV FUNCTIONS FOR BOOLEAN NETWORKS
    Li, Haitao
    Wang, Yuzhen
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2017, 55 (06) : 3437 - 3457
  • [43] Constructive approximate interpolation for real functions by the radial basis function
    Han, Xuli
    Amara, Camara
    Liu, Xinru
    [J]. 2007 INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE & TECHNOLOGY, PROCEEDINGS, 2007, : 342 - 345
  • [44] Quasi-interpolation for data fitting by the radial basis functions
    Han, Xuli
    Hou, Muzhou
    [J]. ADVANCES IN GEOMETRIC MODELING AND PROCESSING, 2008, 4975 : 541 - 547
  • [45] On condition number of meshless collocation method using radial basis functions
    Duan, Y
    Tan, YJ
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (01) : 141 - 147
  • [46] Point-cloud registration using adaptive radial basis functions
    Zhang, Ju
    Ackland, David
    Fernandez, Justin
    [J]. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2018, 21 (07) : 498 - 502
  • [47] Forward deterministic pricing of options using Gaussian radial basis functions
    Rad, Jamal Amani
    Hook, Josef
    Larsson, Elisabeth
    von Sydow, Lina
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2018, 24 : 209 - 217
  • [48] Numerical solution of fractional telegraph equation by using radial basis functions
    Hosseini, Vahid Reza
    Chen, Wen
    Avazzadeh, Zakieh
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2014, 38 : 31 - 39
  • [49] Some problems with the method of fundamental solution using radial basis functions
    Hui Wang
    Qinghua Qin
    [J]. Acta Mechanica Solida Sinica, 2007, 20 : 21 - 29
  • [50] Numerical comparisons of two meshless methods using radial basis functions
    Li, JC
    Hon, YC
    Chen, CS
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2002, 26 (03) : 205 - 225