GRID REFINEMENT IN THE CONSTRUCTION OF LYAPUNOV FUNCTIONS USING RADIAL BASIS FUNCTIONS

被引:6
|
作者
Mohammed, Najla [1 ]
Giesl, Peter [1 ]
机构
[1] Univ Sussex, Dept Math, Falmer BN1 9QH, E Sussex, England
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2015年 / 20卷 / 08期
基金
英国工程与自然科学研究理事会;
关键词
Lyapunov function; domain of attraction; mesh-free collocation; Radial Basis Function; Voronoi diagram; refinement; INTERPOLATION;
D O I
10.3934/dcdsb.2015.20.2453
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Lyapunov functions are a main tool to determine the domain of attraction of equilibria in dynamical systems. Recently, several methods have been presented to construct a Lyapunov function for a given system. In this paper, we improve the construction method for Lyapunov functions using Radial Basis Functions. We combine this method with a new grid refinement algorithm based on Voronoi diagrams. Starting with a coarse grid and applying the refinement algorithm, we thus manage to reduce the number of data points needed to construct Lyapunov functions. Finally, we give numerical examples to illustrate our algorithms.
引用
收藏
页码:2453 / 2476
页数:24
相关论文
共 50 条
  • [21] Constrained global optimization of expensive black box functions using radial basis functions
    Regis, RG
    Shoemaker, CA
    JOURNAL OF GLOBAL OPTIMIZATION, 2005, 31 (01) : 153 - 171
  • [22] Computation and Verification of Lyapunov Functions
    Giesl, Peter
    Hafstein, Sigurdur
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2015, 14 (04): : 1663 - 1698
  • [23] Approximation of Bivariate Functions by Generalized Wendland Radial Basis Functions
    Kouibia, Abdelouahed
    Gonzalez, Pedro
    Pasadas, Miguel
    Mustafa, Bassim
    Yakhlef, Hossain Oulad
    Omri, Loubna
    MATHEMATICS, 2024, 12 (16)
  • [24] Application of radial basis functions neutral networks in spectral functions
    Zhou, Meng
    Gao, Fei
    Chao, Jingyi
    Liu, Yu-Xin
    Song, Huichao
    PHYSICAL REVIEW D, 2021, 104 (07)
  • [25] Numerical Solution for a Kind of Nonlinear Telegraph Equations Using Radial Basis Functions
    Su, Ling De
    Jiang, Zi Wu
    Jiang, Tong Song
    INFORMATION COMPUTING AND APPLICATIONS, ICICA 2013, PT I, 2013, 391 : 140 - 149
  • [26] Radial basis functions under tension
    Bouhamidi, A
    Le Méhauté, A
    JOURNAL OF APPROXIMATION THEORY, 2004, 127 (02) : 135 - 154
  • [27] Hermite Radial Basis Functions Implicits
    Macedo, I.
    Gois, J. P.
    Velho, L.
    COMPUTER GRAPHICS FORUM, 2011, 30 (01) : 27 - 42
  • [28] Approximation with fractal radial basis functions
    Kumar, D.
    Chand, A. K. B.
    Massopust, P. R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 454
  • [29] On the formulation of credit barrier model using radial basis functions
    Tung, Humphrey K. K.
    Wong, Michael C. S.
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2014, 65 (09) : 1437 - 1452
  • [30] Implicit fitting using radial basis functions with ellipsoid constraint
    Li, Q
    Wills, D
    Phillips, R
    Viant, WJ
    Griffiths, JG
    Ward, J
    COMPUTER GRAPHICS FORUM, 2004, 23 (01) : 55 - 69