Evolution of metastable α phase during heating of Ti48Al2Cr2Nb intermetallic alloy

被引:40
作者
Guyon, J. [1 ,2 ]
Hazotte, A. [1 ,2 ]
Bouzy, E. [1 ,2 ]
机构
[1] Univ Lorraine, UMR CNRS 7239, LEM3, F-57045 Metz, France
[2] Univ Lorraine, Lab Excellence Design Alloy Met Low mAss Struct D, F-57045 Metz, France
关键词
Titanium aluminides; Intermetallics; Recrystallization; Heat treatment; Nanolamellar microstructure; TIAL-BASED ALLOYS; MECHANICAL-PROPERTIES; LAMELLAR MICROSTRUCTURE; GRAIN-REFINEMENT; TRANSFORMATION; DESIGN; CAST; NIOBIUM; STATE;
D O I
10.1016/j.jallcom.2015.09.179
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The return to equilibrium of retained a phase powders during heating is analyzed using DTA, XRD, SEM and TEM. It takes place in three successive steps: firstly nanolamellar transformation, secondly recrystallization and thirdly alpha(2) precipitation. It is shown that recrystallization refines the microstructure. The resulting microstructure is constituted by gamma grains of mean size about 1.7 mu m, with four variants of fine acicular alpha(2) precipitates inside the grains and very small alpha(2) globular precipitates at grain boundaries. The possibilities to apply this heating for refining the microstructure in the powder metallurgy route are discussed. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:667 / 675
页数:9
相关论文
共 48 条
[1]  
[Anonymous], PRODUCTION PROCESSIN
[2]  
Blackburn M., 1984, UK Patent GB, Patent No. 20606938
[3]  
BLACKBURN MJ, 1970, SCI TECHNOLOGY APPL, P633
[4]   On some contrast reversals in SEM: Application to metal/insulator systems [J].
Cazaux, Jacques .
ULTRAMICROSCOPY, 2008, 108 (12) :1645-1652
[5]   Nanometer-scaled lamellar microstructures in Ti-45Al-7.5Nb-(0;0.5)C alloys and their influence on hardness [J].
Cha, Limei ;
Scheu, Christina ;
Clemens, Helmut ;
Chladil, Harald F. ;
Dehm, Gerhard ;
Gerling, Rainer ;
Bartels, Arno .
INTERMETALLICS, 2008, 16 (07) :868-875
[6]   Study of microstructure and solute partitioning in a cast Ti-48Al-2Cr-2Nb alloy by quenching during directional solidification technique [J].
Charpentier, M ;
Daloz, D ;
Hazotte, A ;
Gautier, E ;
Lesoult, G ;
Grange, M .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2003, 34A (10) :2139-2148
[7]   Grain refinement in γ-TiAl-based alloys by solid state phase transformations [J].
Clemens, H. ;
Bartels, A. ;
Bystrzanowski, S. ;
Chladil, H. ;
Leitner, H. ;
Dehm, G. ;
Gerling, R. ;
Schimansky, F. P. .
INTERMETALLICS, 2006, 14 (12) :1380-1385
[8]   Design, Processing, Microstructure, Properties, and Applications of Advanced Intermetallic TiAl Alloys [J].
Clemens, Helmut ;
Mayer, Svea .
ADVANCED ENGINEERING MATERIALS, 2013, 15 (04) :191-215
[9]   Phase transformation mechanisms involved in two-phase TiAl-based alloys .2. Discontinuous coarsening and massive-type transformation [J].
Denquin, A ;
Naka, S .
ACTA MATERIALIA, 1996, 44 (01) :353-365
[10]   Features of feathery γ structure in a near-γ TiAl alloy [J].
Dey, S. R. ;
Bouzy, E. ;
Hazotte, A. .
ACTA MATERIALIA, 2008, 56 (09) :2051-2062