Group recommendation based on hybrid trust metric

被引:3
|
作者
Wang, Haiyan [1 ,2 ]
Chen, Dongdong [1 ,2 ]
Zhang, Jiawei [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Jiangsu Key Lab Big Data Secur & Intelligent Proc, Nanjing, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Jiangsu High Technol Res Key Lab Wireless Sensor, Sch Comp Sci, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Hybrid trustmetric; Tanimoto coefficient; group recommendation; PROBABILISTIC MODEL CHECKING; PERSONALIZED RECOMMENDATION; SERVICE SELECTION;
D O I
10.1080/00051144.2020.1715590
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Group recommendation is a special service type which has the ability to satisfy a group's common interest and find the preferred items for group users. Deep mining of trust relationship between group members can contribute to the improvement of accuracy during group recommendation. Most of the existing trust-based group recommendation methods pay little attention to the diversity of trust sources, resulting in poor recommendation accuracy. To address the problem above, this paper proposes a group recommendation method based on a hybrid trust metric (GR-HTM). Firstly, GR-HTM creates an attribute trust matrix and a social trust matrix based on user attributes and social relationships, respectively. Secondly, GR-HTM accomplishes a hybrid trust matrix based on the integration of these two matrices with the employment of the Tanimoto coefficient. Finally, GR-HTM calculates weights for each item in the hybrid trust matrix based on weighted-meanlist and proceeds to group recommendation with a given trust threshold. Simulation experiments demonstrate that the proposed GR-HTM has better performance for group recommendation in accuracy and effectiveness.
引用
收藏
页码:694 / 703
页数:10
相关论文
共 50 条
  • [1] A hybrid recommendation list aggregation algorithm for group recommendation
    Ma, Yuankun
    Ji, Shujuan
    Liang, Yongquan
    Zhao, Jianli
    Cui, Yongfeng
    2015 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY (WI-IAT), VOL 1, 2015, : 405 - 408
  • [2] Influence Based Group Recommendation System in Personality and Dynamic Trust
    Huang, Cheng-En
    Lin, Yi-ling
    HCI INTERNATIONAL 2024 POSTERS, PT VI, HCII 2024, 2024, 2119 : 50 - 57
  • [3] Document recommendation based on the analysis of group trust and user weightings
    Lai, Chin-Hui
    Chang, Yu-Chieh
    JOURNAL OF INFORMATION SCIENCE, 2019, 45 (06) : 845 - 862
  • [4] Algorithm for Integrating Multi-Proximity for Trust-Based Group Recommendation in Ridesharing
    Wang, Zhiwen
    Tang, Lei
    Zhao, Yaling
    Ma, Junchi
    Han, Meng
    Duan, Zongtao
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 1305 - 1310
  • [5] Personalized Group Recommendation Model Based on Hybrid Graph Neural Network
    Wang, Cong
    Shi, Yancui
    Peng, Jin
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XII, ICIC 2024, 2024, 14873 : 458 - 466
  • [6] Research of Group Recommendation Based on Matrix Factorization
    Zhang, Shuang
    Hu, Qing-he
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 3736 - 3739
  • [7] TruGRC: Trust-Aware Group Recommendation with Virtual Coordinators
    Wang, Ximeng
    Liu, Yun
    Lu, Jie
    Xiong, Fei
    Zhang, Guangquan
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 94 : 224 - 236
  • [8] HGGC: A hybrid group recommendation model considering group cohesion
    Jeong, Hyun Ji
    Kim, Myoung Ho
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 136 : 73 - 82
  • [9] Hybrid Deep Framework for Group Event Recommendation
    Li, Ruichang
    Zhu, Honglei
    Fan, Liao
    Song, Xuekun
    IEEE ACCESS, 2020, 8 : 4775 - 4784
  • [10] Collaborative filtering recommendation based on trust and emotion
    Guo, Liangmin
    Liang, Jiakun
    Zhu, Ying
    Luo, Yonglong
    Sun, Liping
    Zheng, Xiaoyao
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2019, 53 (01) : 113 - 135