Turbulence in core-collapse supernovae

被引:55
作者
Radice, David [1 ,2 ]
Abdikamalov, Ernazar [3 ]
Ott, Christian D. [4 ]
Moesta, Philipp [5 ]
Couch, Sean M. [6 ,7 ,8 ]
Roberts, Luke F. [6 ,8 ]
机构
[1] Inst Adv Study, Sch Nat Sci, 1 Einstein Dr, Princeton, NJ 08540 USA
[2] Princeton Univ, Dept Astrophys Sci, 4 Ivy Lane, Princeton, NJ 08544 USA
[3] Nazarbayev Univ, Sch Sci & Technol, Dept Phys, Astana 010000, Kazakhstan
[4] CALTECH, Walter Burke Inst Theoret Phys, TAPIR, Mailcode 350-17, Pasadena, CA 91125 USA
[5] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall 3411, Berkeley, CA 94720 USA
[6] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[7] Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
[8] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
supernovae; astrophysical turbulence; methods: numerical; ACCRETION-SHOCK INSTABILITY; ENTROPIC-ACOUSTIC INSTABILITY; BOLTZMANN NEUTRINO TRANSPORT; SIMPLE TOY MODEL; SPHERICAL ACCRETION; DRIVEN CONVECTION; 3-DIMENSIONAL SIMULATIONS; POSTBOUNCE EVOLUTION; DEVELOPED TURBULENCE; BONDI ACCRETION;
D O I
10.1088/1361-6471/aab872
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Multidimensional simulations show that non-radial, turbulent, fluid motion is a fundamental component of the core-collapse supernova explosion mechanism. Neutrino-driven convection, the standing accretion shock instability, and relicperturbations from advanced nuclear burning stages can all impact the outcome of core collapse in a qualitative and quantitative way. Here, we review the current understanding of these phenomena and their role in the explosion of massive stars. We also discuss the role of protoneutron star convection and of magnetic fields in the context of the delayed neutrino mechanism.
引用
收藏
页数:27
相关论文
共 165 条
[51]   Three-dimensional simulations of SASI- and convection-dominated core-collapse supernovae [J].
Fernandez, Rodrigo .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 452 (02) :2071-2086
[52]   Characterizing SASI- and convection-dominated core-collapse supernova explosions in two dimensions [J].
Fernandez, Rodrigo ;
Mueller, Bernhard ;
Foglizzo, Thierry ;
Janka, Hans-Thomas .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 440 (03) :2763-2780
[53]   HYDRODYNAMICS OF CORE-COLLAPSE SUPERNOVAE AT THE TRANSITION TO EXPLOSION. I. SPHERICAL SYMMETRY [J].
Fernandez, Rodrigo .
ASTROPHYSICAL JOURNAL, 2012, 749 (02)
[54]   THE SPIRAL MODES OF THE STANDING ACCRETION SHOCK INSTABILITY [J].
Fernandez, Rodrigo .
ASTROPHYSICAL JOURNAL, 2010, 725 (02) :1563-1580
[55]   DYNAMICS OF A SPHERICAL ACCRETION SHOCK WITH NEUTRINO HEATING AND ALPHA-PARTICLE RECOMBINATION [J].
Fernandez, Rodrigo ;
Thompson, Christopher .
ASTROPHYSICAL JOURNAL, 2009, 703 (02) :1464-1485
[56]   STABILITY OF A SPHERICAL ACCRETION SHOCK WITH NUCLEAR DISSOCIATION [J].
Fernandez, Rodrigo ;
Thompson, Christopher .
ASTROPHYSICAL JOURNAL, 2009, 697 (02) :1827-1841
[57]   AN HST SURVEY OF THE HIGHEST-VELOCITY EJECTA IN CASSIOPEIA A [J].
Fesen, Robert A. ;
Milisavljevic, Dan .
ASTROPHYSICAL JOURNAL, 2016, 818 (01)
[58]   Instability of a stalled accretion shock: Evidence for the advective-acoustic cycle [J].
Foglizzo, T. ;
Galletti, P. ;
Scheck, L. ;
Janka, H. -Th. .
ASTROPHYSICAL JOURNAL, 2007, 654 (02) :1006-1021
[59]   Neutrino-driven convection versus advection in core-collapse supernovae [J].
Foglizzo, T. ;
Scheck, L. ;
Janka, H. -Th. .
ASTROPHYSICAL JOURNAL, 2006, 652 (02) :1436-1450
[60]   A SIMPLE TOY MODEL OF THE ADVECTIVE-ACOUSTIC INSTABILITY. I. PERTURBATIVE APPROACH [J].
Foglizzo, T. .
ASTROPHYSICAL JOURNAL, 2009, 694 (02) :820-832