Turbulence in core-collapse supernovae

被引:53
作者
Radice, David [1 ,2 ]
Abdikamalov, Ernazar [3 ]
Ott, Christian D. [4 ]
Moesta, Philipp [5 ]
Couch, Sean M. [6 ,7 ,8 ]
Roberts, Luke F. [6 ,8 ]
机构
[1] Inst Adv Study, Sch Nat Sci, 1 Einstein Dr, Princeton, NJ 08540 USA
[2] Princeton Univ, Dept Astrophys Sci, 4 Ivy Lane, Princeton, NJ 08544 USA
[3] Nazarbayev Univ, Sch Sci & Technol, Dept Phys, Astana 010000, Kazakhstan
[4] CALTECH, Walter Burke Inst Theoret Phys, TAPIR, Mailcode 350-17, Pasadena, CA 91125 USA
[5] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall 3411, Berkeley, CA 94720 USA
[6] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[7] Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
[8] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
supernovae; astrophysical turbulence; methods: numerical; ACCRETION-SHOCK INSTABILITY; ENTROPIC-ACOUSTIC INSTABILITY; BOLTZMANN NEUTRINO TRANSPORT; SIMPLE TOY MODEL; SPHERICAL ACCRETION; DRIVEN CONVECTION; 3-DIMENSIONAL SIMULATIONS; POSTBOUNCE EVOLUTION; DEVELOPED TURBULENCE; BONDI ACCRETION;
D O I
10.1088/1361-6471/aab872
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Multidimensional simulations show that non-radial, turbulent, fluid motion is a fundamental component of the core-collapse supernova explosion mechanism. Neutrino-driven convection, the standing accretion shock instability, and relicperturbations from advanced nuclear burning stages can all impact the outcome of core collapse in a qualitative and quantitative way. Here, we review the current understanding of these phenomena and their role in the explosion of massive stars. We also discuss the role of protoneutron star convection and of magnetic fields in the context of the delayed neutrino mechanism.
引用
收藏
页数:27
相关论文
共 165 条
  • [91] Growth of perturbations in gravitational collapse and accretion
    Lai, D
    Goldreich, P
    [J]. ASTROPHYSICAL JOURNAL, 2000, 535 (01) : 402 - 411
  • [92] Analytic approach to the stability of standing accretion shocks: Application to core-collapse supernovae
    Laming, J. Martin
    [J]. ASTROPHYSICAL JOURNAL, 2007, 659 (02) : 1449 - 1457
  • [93] LEDOUX P, 1947, ASTROPHYS J, V105, P305
  • [94] THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVA SIMULATED USING A 15 M⊙ PROGENITOR
    Lentz, Eric J.
    Bruenn, Stephen W.
    Hix, W. Raphael
    Mezzacappa, Anthony
    Messer, O. E. Bronson
    Endeve, Eirik
    Blondin, John M.
    Harris, J. Austin
    Marronetti, Pedro
    Yakunin, Konstantin N.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2015, 807 (02)
  • [95] Supernova simulations with Boltzmann neutrino transport:: A comparison of methods
    Liebendörfer, M
    Rampp, M
    Janka, HT
    Mezzacappa, A
    [J]. ASTROPHYSICAL JOURNAL, 2005, 620 (02) : 840 - 860
  • [96] Liebendörfer M, 2001, PHYS REV D, V63, DOI 10.1103/PhysRevD.63.103004
  • [97] The Morphologies and Kinematics of Supernova Remnants
    Lopez, Laura A.
    Fesen, Robert A.
    [J]. SPACE SCIENCE REVIEWS, 2018, 214 (01)
  • [98] How Turbulence Enables Core-collapse Supernova Explosions
    Mabanta, Quintin A.
    Murphy, Jeremiah W.
    [J]. ASTROPHYSICAL JOURNAL, 2018, 856 (01)
  • [99] Mahesh K., 1996, The interaction of a shock wave with a turbulent shear flow
  • [100] DELAYED NEUTRINO-DRIVEN SUPERNOVA EXPLOSIONS AIDED BY THE STANDING ACCRETION-SHOCK INSTABILITY
    Marek, A.
    Janka, H. -Th.
    [J]. ASTROPHYSICAL JOURNAL, 2009, 694 (01) : 664 - 696