Turbulence in core-collapse supernovae

被引:53
作者
Radice, David [1 ,2 ]
Abdikamalov, Ernazar [3 ]
Ott, Christian D. [4 ]
Moesta, Philipp [5 ]
Couch, Sean M. [6 ,7 ,8 ]
Roberts, Luke F. [6 ,8 ]
机构
[1] Inst Adv Study, Sch Nat Sci, 1 Einstein Dr, Princeton, NJ 08540 USA
[2] Princeton Univ, Dept Astrophys Sci, 4 Ivy Lane, Princeton, NJ 08544 USA
[3] Nazarbayev Univ, Sch Sci & Technol, Dept Phys, Astana 010000, Kazakhstan
[4] CALTECH, Walter Burke Inst Theoret Phys, TAPIR, Mailcode 350-17, Pasadena, CA 91125 USA
[5] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall 3411, Berkeley, CA 94720 USA
[6] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[7] Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
[8] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
supernovae; astrophysical turbulence; methods: numerical; ACCRETION-SHOCK INSTABILITY; ENTROPIC-ACOUSTIC INSTABILITY; BOLTZMANN NEUTRINO TRANSPORT; SIMPLE TOY MODEL; SPHERICAL ACCRETION; DRIVEN CONVECTION; 3-DIMENSIONAL SIMULATIONS; POSTBOUNCE EVOLUTION; DEVELOPED TURBULENCE; BONDI ACCRETION;
D O I
10.1088/1361-6471/aab872
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Multidimensional simulations show that non-radial, turbulent, fluid motion is a fundamental component of the core-collapse supernova explosion mechanism. Neutrino-driven convection, the standing accretion shock instability, and relicperturbations from advanced nuclear burning stages can all impact the outcome of core collapse in a qualitative and quantitative way. Here, we review the current understanding of these phenomena and their role in the explosion of massive stars. We also discuss the role of protoneutron star convection and of magnetic fields in the context of the delayed neutrino mechanism.
引用
收藏
页数:27
相关论文
共 165 条
  • [1] Shock-turbulence interaction in core-collapse supernovae
    Abdikamalov, Ernazar
    Zhaksylykov, Azamat
    Radice, David
    Berdibek, Shapagat
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 461 (04) : 3864 - 3876
  • [2] NEUTRINO-DRIVEN TURBULENT CONVECTION AND STANDING ACCRETION SHOCK INSTABILITY IN THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE
    Abdikamalov, Ernazar
    Ott, Christian D.
    Radice, David
    Roberts, Luke F.
    Haas, Roland
    Reisswig, Christian
    Moesta, Philipp
    Klion, Hannah
    Schnetter, Erik
    [J]. ASTROPHYSICAL JOURNAL, 2015, 808 (01)
  • [3] The nonmonotonic dependence of supernova and compact remnant formation on progenitor rotation
    Akiyama, S
    Wheeler, JC
    [J]. ASTROPHYSICAL JOURNAL, 2005, 629 (01) : 414 - 421
  • [4] [Anonymous], 1968, Principles of Stellar Structure
  • [5] TURBULENT CONVECTION IN STELLAR INTERIORS. II. THE VELOCITY FIELD
    Arnett, David
    Meakin, Casey
    Young, Patrick A.
    [J]. ASTROPHYSICAL JOURNAL, 2009, 690 (02) : 1715 - 1729
  • [6] Key issues review: numerical studies of turbulence in stars
    Arnett, W. David
    Meakin, Casey
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2016, 79 (10)
  • [7] Comparison of Subgrid-scale Viscosity Models and Selective Filtering Strategy for Large-eddy Simulations
    Aubard, G.
    Volpiani, P. Stefanin
    Gloerfelt, X.
    Robinet, J. -C.
    [J]. FLOW TURBULENCE AND COMBUSTION, 2013, 91 (03) : 497 - 518
  • [8] Intermittency and universality in fully developed inviscid and weakly compressible turbulent flows
    Benzi, Roberto
    Biferale, Luca
    Fisher, Robert T.
    Kadanoff, Leo P.
    Lamb, Donald Q.
    Toschi, Federico
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (23)
  • [9] SUPERNOVA MECHANISMS
    BETHE, HA
    [J]. REVIEWS OF MODERN PHYSICS, 1990, 62 (04) : 801 - 866
  • [10] REVIVAL OF A STALLED SUPERNOVA SHOCK BY NEUTRINO HEATING
    BETHE, HA
    WILSON, JR
    [J]. ASTROPHYSICAL JOURNAL, 1985, 295 (01) : 14 - 23