Equivariant reduction to torus of a principal bundle

被引:2
作者
Biswas, I [1 ]
Parameswaran, AJ [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
关键词
automorphism group; principal bundle; splitting;
D O I
10.1023/B:KTHE.0000022849.59467.60
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be an irreducible projective variety, over an algebraically closed field k of characteristic zero, equipped with an action of a connected algebraic group S over k. Let E-G be a principal G-bundle over M equipped with a lift of the action of S on M, where G is a connected reductive linear algebraic group. Assume that E-G admits a reduction of structure group to a maximal torus T subset of G. We give a necessary and sufficient condition for the existence of a T-reduction of E-G which is left invariant by the action of S on E-G.
引用
收藏
页码:125 / 133
页数:9
相关论文
共 4 条
[1]  
[Anonymous], 1991, LINEAR ALGEBRAIC GRO, DOI DOI 10.1007/978-1-4612-0941-6
[2]  
BIALYNIC.A, 1966, B ACAD POL SCI SMAP, V14, P177
[3]   SUR LA CLASSIFICATION DES FIBRES HOLOMORPHES SUR LA SPHERE DE RIEMANN [J].
GROTHENDIECK, A .
AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (01) :121-138
[4]  
KUMAR S, 2003, PERSPECTIVES GEOMETR, P500