Modeling micro-topographic controls on boreal peatland hydrology and methane fluxes

被引:36
作者
Aleina, F. Cresto [1 ,2 ]
Runkle, B. R. K. [3 ,4 ]
Kleinen, T. [1 ]
Kutzbach, L. [3 ]
Schneider, J. [5 ]
Brovkin, V. [1 ]
机构
[1] Max Planck Inst Meteorol, D-20146 Hamburg, Germany
[2] Max Planck Inst Biogeochem, D-07745 Jena, Germany
[3] Univ Hamburg, Ctr Earth Syst Res & Sustainabil, Inst Soil Sci, Hamburg, Germany
[4] Univ Arkansas, Dept Biol & Agr Engn, Fayetteville, AR 72701 USA
[5] Univ Koblenz Landau, Inst Environm Sci, Landau In Der Pfalz, Germany
关键词
GLOBAL WETLAND EXTENT; CARBON ACCUMULATION; PRESENT STATE; EMISSIONS; FINLAND; RATES; CH4; HETEROGENEITY; DYNAMICS;
D O I
10.5194/bg-12-5689-2015
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Small-scale surface heterogeneities can influence land-atmosphere fluxes and therefore carbon, water and energy budgets on a larger scale. This effect is of particular relevance for high-latitude ecosystems, because of the great amount of carbon stored in their soils. We introduce a novel micro-topographic model, the Hummock-Hollow (HH) model, which explicitly represents small-scale surface elevation changes. By computing the water table at the small scale, and by coupling the model with a process-based model for soil methane processes, we are able to model the effects of micro-topography on hydrology and methane emissions in a typical boreal peatland. In order to assess the effect of micro-topography on water the balance and methane emissions of the peatland we compare two versions of the model, one with a representation of micro-topography and a classical single-bucket model version, and show that the temporal variability in the model version with micro-topography performs better if compared with local data. Accounting for micro-topography almost triples the cumulative methane flux over the simulated time-slice. We found that the single-bucket model underestimates methane emissions because of its poor performance in representing hydrological dynamics. The HH model with micro-topography captures the spatial dynamics of water and methane fluxes, being able to identify the hotspots for methane emissions. The model also identifies a critical scale (0.01 km(2)) which marks the minimal resolution for the explicit representation of micro-topography in larger-scale models.
引用
收藏
页码:5689 / 5704
页数:16
相关论文
共 47 条
[1]   Coupled local facilitation and global hydrologic inhibition drive landscape geometry in a patterned peatland [J].
Acharya, S. ;
Kaplan, D. A. ;
Casey, S. ;
Cohen, M. J. ;
Jawitz, J. W. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2015, 19 (05) :2133-2144
[2]   A stochastic model for the polygonal tundra based on Poisson-Voronoi diagrams [J].
Aleina, F. Cresto ;
Brovkin, V. ;
Muster, S. ;
Boike, J. ;
Kutzbach, L. ;
Sachs, T. ;
Zuyev, S. .
EARTH SYSTEM DYNAMICS, 2013, 4 (02) :187-198
[3]   Spatial Variations in Pore-Water Biogeochemistry Greatly Exceed Temporal Changes During Baseflow Conditions in a Boreal River Valley Mire Complex, Northwest Russia [J].
Avagyan, Armine ;
Runkle, Benjamin R. K. ;
Hartmann, Jens ;
Kutzbach, Lars .
WETLANDS, 2014, 34 (06) :1171-1182
[4]   Application of high-resolution spectral absorbance measurements to determine dissolved organic carbon concentration in remote areas [J].
Avagyan, Armine ;
Runkle, Benjamin R. K. ;
Kutzbach, Lars .
JOURNAL OF HYDROLOGY, 2014, 517 :435-446
[5]  
Baird AJ, 2009, GEOPHYS MONOGR SER, V184, P37, DOI 10.1029/2008GM000826
[6]  
Baird A. J., 2009, GEOPHYS MONOGR SER, V184, DOI 10.1029/GM184
[7]   Controls on CH4 emissions from a northern peatland [J].
Bellisario, LM ;
Bubier, JL ;
Moore, TR ;
Chanton, JP .
GLOBAL BIOGEOCHEMICAL CYCLES, 1999, 13 (01) :81-91
[8]  
Beven K., 1979, HYDROL SCI B, V24, P43, DOI [10.1080/02626667909491834, DOI 10.1080/02626667909491834]
[9]   Carbon cycling in peatlands - A review of processes and controls [J].
Blodau, Christian .
Environmental Reviews, 2002, 10 (02) :111-134
[10]   WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia [J].
Bohn, T. J. ;
Melton, J. R. ;
Ito, A. ;
Kleinen, T. ;
Spahni, R. ;
Stocker, B. D. ;
Zhang, B. ;
Zhu, X. ;
Schroeder, R. ;
Glagolev, M. V. ;
Maksyutov, S. ;
Brovkin, V. ;
Chen, G. ;
Denisov, S. N. ;
Eliseev, A. V. ;
Gallego-Sala, A. ;
McDonald, K. C. ;
Rawlins, M. A. ;
Riley, W. J. ;
Subin, Z. M. ;
Tian, H. ;
Zhuang, Q. ;
Kaplan, J. O. .
BIOGEOSCIENCES, 2015, 12 (11) :3321-3349