Synchronization of fractional-order chaotic systems using unidirectional adaptive full-state linear error feedback coupling

被引:17
作者
Leung, Andrew Y. T. [1 ]
Li, Xian-Feng [1 ]
Chu, Yan-Dong [2 ]
Rao, Xiao-Bo [2 ]
机构
[1] City Univ Hong Kong, Dept Architecture & Civil Engn, Kowloon, Hong Kong, Peoples R China
[2] Lanzhou Jiaotong Univ, Dept Math, Lanzhou 730070, Peoples R China
关键词
Fractional derivative; Chaos synchronization; Adaptive law; Full-state linear error feedback; Coupling; FINITE-TIME SYNCHRONIZATION; CRITERION; STABILIZATION; HYPERCHAOS; THEOREM;
D O I
10.1007/s11071-015-2148-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Based on the stability theory of fractional-order system, a novel unidirectional adaptive full-state linear error feedback coupling scheme is extended to control and synchronize all of fractional-order differential (FOD) chaotic systems with in-commensurate (and commensurate) orders. The feedback strength is adaptive to an updated law rather than prescribed as a constant. The convergence speed of feedback strength is regulated by a constant. With rigorous linear algebraic theorems and precisely numerical matrix computations, a reasonable interval in which the ultimate final control strength dwells is suggested, and the reliability of synchronization state is guaranteed. It demonstrates that the unidirectional full-state linear feedback coupling scheme can be adopted to control and synchronize FOD chaotic systems directly. Numerical simulations of three representative FOD chaotic systems illustrate the effectiveness of the proposed scheme.
引用
收藏
页码:185 / 199
页数:15
相关论文
共 77 条
[1]   Desynchronization bifurcation of coupled nonlinear dynamical systems [J].
Acharyya, Suman ;
Amritkar, R. E. .
CHAOS, 2011, 21 (02)
[2]   Robust synchronization of a chaotic mechanical system with nonlinearities in control inputs [J].
Aghababa, Mohammad Pourmahmood ;
Aghababa, Hasan Pourmahmood .
NONLINEAR DYNAMICS, 2013, 73 (1-2) :363-376
[3]   Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities [J].
Aghababa, Mohammad Pourmahmood ;
Heydari, Aiuob .
APPLIED MATHEMATICAL MODELLING, 2012, 36 (04) :1639-1652
[4]   A modified adaptive control method for synchronization of some fractional chaotic systems with unknown parameters [J].
Agrawal, S. K. ;
Das, S. .
NONLINEAR DYNAMICS, 2013, 73 (1-2) :907-919
[5]   Lyapunov functions for fractional order systems [J].
Aguila-Camacho, Norelys ;
Duarte-Mermoud, Manuel A. ;
Gallegos, Javier A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :2951-2957
[6]   Stabilization of fractional order systems using a finite number of state feedback laws [J].
Balochian, Saeed ;
Sedigh, Ali Khaki ;
Haeri, Mohammad .
NONLINEAR DYNAMICS, 2011, 66 (1-2) :141-152
[7]   Coupled chaotic colpitts oscillators: Identical and mismatched cases [J].
Baziliauskas, A. ;
Krivickas, R. ;
Tamasevicius, A. .
NONLINEAR DYNAMICS, 2006, 44 (1-4) :151-158
[8]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[9]  
Caponetto R., 2010, FRACTIONAL ORDER SYS
[10]   Synchronization between integer-order chaotic systems and a class of fractional-order chaotic systems via sliding mode control [J].
Chen, Diyi ;
Zhang, Runfan ;
Sprott, J. C. ;
Chen, Haitao ;
Ma, Xiaoyi .
CHAOS, 2012, 22 (02)