Beyond the Aggregation of Its Members-A Novel Group Recommender System from the Perspective of Preference Distribution

被引:2
作者
Guo, Zhiwei [1 ]
Tang, Chaowei [1 ]
Niu, Wenjia [2 ]
Fu, Yunqing [4 ]
Xia, Haiyang [3 ]
Tang, Hui [1 ]
机构
[1] Chongqing Univ, Coll Commun Engn, Chongqing 400044, Peoples R China
[2] Beijing Jiaotong Univ, Beijing Key Lab Secur & Privacy Intelligent Trans, Beijing 100044, Peoples R China
[3] Xian ShiYou Univ, Sch Comp Sci, Xian 710065, Shaanxi, Peoples R China
[4] Chongqing Univ, Coll Software, Chongqing 400044, Peoples R China
来源
KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT (KSEM 2017): 10TH INTERNATIONAL CONFERENCE, KSEM 2017, MELBOURNE, VIC, AUSTRALIA, AUGUST 19-20, 2017, PROCEEDINGS | 2017年 / 10412卷
基金
中国国家自然科学基金;
关键词
Group recommender system; Aggregation method; Preference distribution; Multi-criteria decision making;
D O I
10.1007/978-3-319-63558-3_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper focuses on recommending items to group of users rather than individual users. To model group profile, existing researches almost aggregate preferences of members into a single value, and thus cannot reflect actual group profile of groups with conflicting characteristics. Therefore, we propose a novel group recommender system mechanism. It views group profile as preference distribution, and then models item recommendation process as a multi-criteria decision making process, in order to obtain better recommendation results. Finally, experiments are conducted to verify the proposed approach.
引用
收藏
页码:359 / 370
页数:12
相关论文
共 18 条
[1]  
[Anonymous], 2015, P 9 ACM C RECOMMENDE
[2]  
Baltrunas L., 2010, P 4 ACM C RECOMMENDE, P119, DOI DOI 10.1145/1864708.1864733
[3]  
Crossen A., 2002, IUI 02. 2002 International Conference on Intelligent User Interfaces, P184
[4]  
Geng X., 2015, 24 INT JOINT C ART I
[5]   Label Distribution Learning [J].
Geng, Xin ;
Ji, Rongzi .
2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2013, :377-383
[6]   A dual-perspective latent factor model for group-aware social event recommendation [J].
Jhamb, Yogesh ;
Fang, Yi .
INFORMATION PROCESSING & MANAGEMENT, 2017, 53 (03) :559-576
[7]   Virtual user approach for group recommender systems using precedence relations [J].
Kagita, Venkateswara Rao ;
Pujari, Arun K. ;
Padmanabhan, Vineet .
INFORMATION SCIENCES, 2015, 294 :15-30
[8]   Folkommender: a group recommender system based on a graph-based ranking algorithm [J].
Kim, Heung-Nam ;
Bloess, Mark ;
El Saddik, Abdulmotaleb .
MULTIMEDIA SYSTEMS, 2013, 19 (06) :509-525
[9]  
Kuei-Hong Lin, 2012, 2012 International Symposium on Communications and Information Technologies (ISCIT), P626, DOI 10.1109/ISCIT.2012.6380976
[10]  
McCarthy J. F., 1998, ACM 1998 Conference on Computer Supported Cooperative Work. Proceedings. CSCW 98, P363, DOI 10.1145/289444.289511