Efficient carbon dots/NiFe-layered double hydroxide/BiVO4 photoanodes for photoelectrochemical water splitting

被引:66
|
作者
Lv, Xiaowei [1 ]
Xiao, Xin [1 ]
Cao, Minglei [1 ]
Bu, Yi [1 ]
Wang, Chuanqing [1 ]
Wang, Mingkui [1 ]
Shen, Yan [1 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Luoyu Rd 1037, Wuhan 430074, Hubei, Peoples R China
关键词
BiVO4; Carbon dots; NiFe-layered double hydroxide; Photoanodes; Photoelectrochemical water splitting; ELECTROCHEMICAL SYNTHESIS; BIVO4; PHOTOANODES; QUANTUM DOTS; ELECTROCATALYST; PERFORMANCE; CONVERSION; NANODOTS; OXIDE;
D O I
10.1016/j.apsusc.2017.12.182
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Modification of semiconductor photoanodes with oxygen evolution catalyst (OEC) is an effective approach for improving photoelectrochemical (PEC) water splitting efficiency. In the configuration, how to increase the activity of OEC is crucial to further improve PEC performance. Herein, a ternary photoanode system was designed to enhance PEC efficiency of photoelectrodes through introducing carbon dots (CDs), NiFe-layered double hydroxide (NiFe-LDH) nanosheets on BiVO4 particles. Systematic research shows that NiFe-LDH serves as an OEC which accelerates oxygen evolution kinetics, while the introduction of CDs can further reduce charge transfer resistance and overpotential for oxygen evolution. Under the synergistic effect of NiFe-LDH and CDs, the photocurrent and incident photon to current conversion efficiency (IPCE) of the resulting CDs/NiFe-LDH/BiVO4 photoanode is improved significantly than those of the NiFe-LDH/BiVO4 electrode. Consequently, such a ternary heterostructure could be an alternative way to further enhance PEC water splitting performance. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1065 / 1071
页数:7
相关论文
共 50 条
  • [21] Effect of Combined Hole Storage and Blocking Interfaces on the Photoelectrochemical Water Splitting Performance of BiVO4 Photoanodes
    Varma, Pooja
    Reddy, K. Arun Joshi
    Reddy, D. Amaranatha
    Gopannagari, Madhusudana
    Kim, Tae Kyu
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (12): : 14891 - 14900
  • [22] Integrating Rh Species with NiFe-Layered Double Hydroxide for Overall Water Splitting
    Zhang, Bowei
    Zhu, Chongqin
    Wu, Zishan
    Stavitski, Eli
    Lui, Yu Hui
    Kim, Tae-Hoon
    Liu, Huan
    Huang, Ling
    Luan, Xuechen
    Zhou, Lin
    Jiang, Kun
    Huang, Wenyu
    Hu, Shan
    Wang, Hailiang
    Francisco, Joseph S.
    NANO LETTERS, 2020, 20 (01) : 136 - 144
  • [23] Oxygen Vacancies Enhanced WO3/BiVO4 Photoanodes Modified by Cobalt Phosphate for Efficient Photoelectrochemical Water Splitting
    Liu, Jianqiao
    Chen, Wenchao
    Sun, Qinda
    Zhang, Yilin
    Li, Xinran
    Wang, Jiangpeng
    Wang, Chao
    Yu, Yue
    Wang, Lin
    Yu, Xuelian
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (03): : 2864 - 2872
  • [24] Cu2O Photocathode for Low Bias Photoelectrochemical Water Splitting Enabled by NiFe-Layered Double Hydroxide Co-Catalyst
    Qi, Huan
    Wolfe, Jonathan
    Fichou, Denis
    Chen, Zhong
    SCIENTIFIC REPORTS, 2016, 6
  • [25] Tailoring multi-layered BiVO4/WO3 photoanodes for an efficient photoelectrochemical gas-phase solar water splitting
    Merino-Garcia, Ivan
    Crespo, Sara
    Perfecto-Irigaray, Maite
    Beobide, Garikoitz
    Irabien, Angel
    Albo, Jonathan
    CATALYSIS TODAY, 2024, 432
  • [26] Charge separation via synergy of homojunction and electrocatalyst in BiVO4 for photoelectrochemical water splitting
    Xie, Zifei
    Chen, Daoming
    Zhai, Jingtong
    Huang, Yongchao
    Ji, Hongbing
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 334
  • [27] Coupling Ni3POM with FeOOH on BiVO4 Photoanodes for Efficient Photoelectrochemical Water Splitting
    Hu, Chunlian
    Xu, Chunjiang
    Li, Xiaohu
    Li, Bonan
    Ma, Xiaoshuo
    Zhu, Jiayu
    Dong, Congzhao
    Ding, Yong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (19): : 7367 - 7377
  • [28] Nonprecious bimetallic NiFe-layered hydroxide nanosheets as a catalyst for highly efficient electrochemical water splitting
    Inamdar, Akbar I.
    Chavan, Harish S.
    Jo, Yongcheol
    Im, Hyunsik
    Kim, Hyungsang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (11) : 16963 - 16972
  • [29] A Zn: BiVO4/ Mo: BiVO4 homojunction as an efficient photoanode for photoelectrochemical water splitting
    Lee, Jae Myeong
    Baek, Ji Hyun
    Gill, Thomas Mark
    Shi, Xinjian
    Lee, SangMyeong
    Cho, In Sun
    Jung, Hyun Suk
    Zheng, Xiaolin
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (15) : 9019 - 9024
  • [30] Construction of a Co-MOF/MXene/BiVO4 Composite Photoanode for Efficient Photoelectrochemical Water Splitting
    Zhong, Shiming
    Kang, Bokai
    Cheng, Xingxing
    Chen, Pengliang
    Fang, Baizeng
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 12 (03) : 1233 - 1246