On a problem related to discrete mean values of Dirichlet L-functions

被引:4
作者
Elma, Ertan [1 ]
机构
[1] Univ Waterloo, Dept Pure Math, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
关键词
Dirichlet L-functions; Mean values; Dirichlet characters;
D O I
10.1016/j.jnt.2020.05.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let chi be a nonprincipal Dirichlet character modulo a prime number p >= 3 of order k >= 2. Define A(p)(chi) := 1/p - 1 Sigma(1 <= N <= P-1) Sigma(1 <= n1,n2 <= N chi(n1)=chi(n2)) 1. We prove that A(p)(chi) = p(2p - 1)/6k + (k - 1) (p + 1)/12k + a(chi) p2/pi(2)k(p - 1) Sigma(k/2)(j=1)vertical bar L(1, chi(2j-1))vertical bar(2) where a(chi) := (1 - chi(-1))/2. (C) 2020 Elsevier Inc. All right reserved.
引用
收藏
页码:36 / 43
页数:8
相关论文
共 6 条
[1]  
Apostol T. M., 1976, UNDERGRADUATE TEXTS
[2]   AVERAGES OF CHARACTER SUMS [J].
BATEMAN, PT ;
CHOWLA, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 1 (06) :781-787
[3]  
Davenport H., 1980, GRADUATE TEXTS MATH, V74
[4]   SOME EXACT FORMULAS FOR THE MEAN-VALUES OF DIRICHLET L-FUNCTIONS [J].
LOUBOUTIN, S .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1993, 36 (02) :190-196
[5]  
Louboutin S., 2016, Bull. Pol. Acad. Sci. Math., V64, P165
[6]  
WALUM H, 1982, ILLINOIS J MATH, V26, P1