Experimental Study of Two-Terminal Resistive Random Access Memory Realized in Mono- and Multilayer Exfoliated Graphene Nanoribbons

被引:7
作者
Shindome, Aya [1 ,3 ]
Doioka, Yu [1 ,3 ]
Beppu, Nobuyasu [1 ,3 ]
Oda, Shunri [2 ]
Uchida, Ken [1 ,3 ]
机构
[1] Tokyo Inst Technol, Dept Phys Elect, Meguro Ku, Tokyo 1528552, Japan
[2] Tokyo Inst Technol, Quantum Nanoelect Res Ctr, Tokyo 1528552, Japan
[3] Keio Univ, Dept Elect & Elect Engn, Yokohama, Kanagawa 2238522, Japan
基金
日本学术振兴会;
关键词
BANDGAP; DEVICES;
D O I
10.7567/JJAP.52.04CN05
中图分类号
O59 [应用物理学];
学科分类号
摘要
Two-terminal mono-and multilayer graphene nanoribbon resistive random access memories (ReRAMs) are experimentally demonstrated. Fundamental ReRAM properties, device scalability, and width dependence with device scaling are investigated. The lower switching energy is obtained for smaller channel width, indicating the suitability of graphene nanoribbons for high-density LSIs. Operation mechanism is studied by changing the type of contact metal and the number of graphene layers as well as by performing physical analysis by atomic force microscopy (AFM), cross-sectional transmission electron microscopy (TEM), and electron energy-loss spectroscopy (EELS). Then, it is suggested that the mechanism is the chemical bonding-state change of graphene. (C) 2013 The Japan Society of Applied Physics
引用
收藏
页数:5
相关论文
共 29 条
[1]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[2]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[3]   Fully Integrated Graphene and Carbon Nanotube Interconnects for Gigahertz High-Speed CMOS Electronics [J].
Chen, Xiangyu ;
Akinwande, Deji ;
Lee, Kyeong-Jae ;
Close, Gael F. ;
Yasuda, Shinichi ;
Paul, Bipul C. ;
Fujita, Shinobu ;
Kong, Jing ;
Wong, H. -S. Philip .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (11) :3137-3143
[4]   Approaching ballistic transport in suspended graphene [J].
Du, Xu ;
Skachko, Ivan ;
Barker, Anthony ;
Andrei, Eva Y. .
NATURE NANOTECHNOLOGY, 2008, 3 (08) :491-495
[5]   Nonvolatile switching in graphene field-effect devices [J].
Echtermeyer, Tim J. ;
Lemme, Max C. ;
Baus, Matthias ;
Szafranek, Bartholomaeus N. ;
Geim, Andre K. ;
Kurz, Heinrich .
IEEE ELECTRON DEVICE LETTERS, 2008, 29 (08) :952-954
[6]   Carrier statistics and quantum capacitance of graphene sheets and ribbons [J].
Fang, Tian ;
Konar, Aniruddha ;
Xing, Huili ;
Jena, Debdeep .
APPLIED PHYSICS LETTERS, 2007, 91 (09)
[7]   Energy band-gap engineering of graphene nanoribbons [J].
Han, Melinda Y. ;
Oezyilmaz, Barbaros ;
Zhang, Yuanbo ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[8]   Nonvolatile resistive switching in graphene oxide thin films [J].
He, C. L. ;
Zhuge, F. ;
Zhou, X. F. ;
Li, M. ;
Zhou, G. C. ;
Liu, Y. W. ;
Wang, J. Z. ;
Chen, B. ;
Su, W. J. ;
Liu, Z. P. ;
Wu, Y. H. ;
Cui, P. ;
Li, Run-Wei .
APPLIED PHYSICS LETTERS, 2009, 95 (23)
[9]   Multilevel Resistive Switching in Planar Graphene/SiO2 Nanogap Structures [J].
He, Congli ;
Shi, Zhiwen ;
Zhang, Lianchang ;
Yang, Wei ;
Yang, Rong ;
Shi, Dongxia ;
Zhang, Guangyu .
ACS NANO, 2012, 6 (05) :4214-4221
[10]   Flexible Resistive Switching Memory Device Based on Graphene Oxide [J].
Hong, Seul Ki ;
Kim, Ji Eun ;
Kim, Sang Ouk ;
Choi, Sung-Yool ;
Cho, Byung Jin .
IEEE ELECTRON DEVICE LETTERS, 2010, 31 (09) :1005-1007