Experimental Evaluation of Parameter Identification Schemes on an Anthropomorphic Direct Drive Robot

被引:16
作者
Chavez-Olivares, Cesar [1 ]
Reyes-Cortes, Fernando [2 ]
Gonzalez-Galvan, Emilio [1 ]
Mendoza-Gutierrez, Marco [3 ]
Bonilla-Gutierrez, Isela [3 ]
机构
[1] Univ Autonoma San Luis Potosi, Fac Ingn, Ctr Invest & Estudios Posgrad, San Luis Potosi, Mexico
[2] Benemerita Univ Autonoma Puebla, Fac Ciencias Elect, Grp Robot, Puebla, Pue, Mexico
[3] Univ Autonoma San Luis Potosi, Fac Ciencias, San Luis Potosi, Mexico
关键词
Direct Drive Robot; Identification Schemes; Regression Models; Least-Squares Algorithm; MODEL-BASED CONTROL; INERTIAL PARAMETERS; INDUSTRIAL ROBOTS; FRICTION; COMPENSATION; TRAJECTORIES; MANIPULATOR; EXCITATION; DYNAMICS;
D O I
10.5772/52190
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
The inertial and friction parameters of a robot are used in the development and evaluation of model-based control schemes and their accuracy is related directly to the performance. These parameters can also be used for a realistic simulation, which may be useful before implementation of new control schemes. In principle, the numerical value of the parameters could be obtained via CAD analysis, but inevitably assembly and manufacturing errors exist. Direct measurement is not a realistic option because the complex nature of the system involves intense, time-consuming effort. Alternatively, we can deduce the values of the parameters by observing the natural response of the system under appropriate experimental conditions, i.e., by using identification schemes, which is an efficient way. This paper presents the experimental evaluation of five identification schemes used to obtain the inertial and friction parameters of a three-degrees-of-freedom direct-drive robot. We assume that the inertial and friction parameters are totally unknown but, by design, the dynamic model is fully known, as in many practical cases. We consider the schemes based on the dynamic regression model, the filtered-dynamic regression model, the supplied-energy regression model, the power regression model and the filtered-power regression model. This paper presents a comparison between experimental and simulated robot response, which enables us to verify the accuracy of each regression model.
引用
收藏
页数:18
相关论文
共 32 条
[1]  
Armstrong B., 1987, ROB AUT P 1987 IEEE, V4, P1131
[2]  
Asada H., 1987, DIRECT DRIVE ROBOTS
[3]  
Astrom K.J., 2008, Adaptive control, V2 edn
[4]   ESTIMATION OF INERTIAL PARAMETERS OF MANIPULATOR LOADS AND LINKS [J].
ATKESON, CG ;
AN, CH ;
HOLLERBACH, JM .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1986, 5 (03) :101-119
[5]   A comparison between direct and indirect dynamic parameter identification methods in industrial robots [J].
Benimeli, Francesc ;
Mata, Vicente ;
Valero, Francisco .
ROBOTICA, 2006, 24 (579-590) :579-590
[6]   Dynamic identification of Staubli RX-60 robot using PSO and LS methods [J].
Bingul, Zafer ;
Karahan, Oguzhan .
EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) :4136-4149
[7]   Rapid prototyping of a model-based control with friction compensation for a direct-drive robot [J].
Bona, Basilio ;
Indri, Marina ;
Smaldone, Nicola .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2006, 11 (05) :576-584
[8]  
Calafiore G, 2001, J ROBOTIC SYST, V18, P55, DOI 10.1002/1097-4563(200102)18:2<55::AID-ROB1005>3.0.CO
[9]  
2-O
[10]  
Canudas de Wit C., 1990, P IFAC 90 C, P178