AVERAGING DYNAMICS DRIVEN BY FRACTIONAL BROWNIAN MOTION

被引:57
作者
Hairer, Martin [1 ]
Li, Xue-Mei [1 ]
机构
[1] Imperial Coll London, London, England
关键词
Fractional Brownian motion; averaging; slow/fast system; sewing lemma; STOCHASTIC DIFFERENTIAL-EQUATIONS; EXISTENCE; ERGODICITY; INEQUALITY; UNIQUENESS; BOUNDS;
D O I
10.1214/19-AOP1408
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider slow/fast systems where the slow system is driven by fractional Brownian motion with Hurst parameter H > 1/2. We show that unlike in the case H = 1/2, convergence to the averaged solution takes place in probability and the limiting process solves the 'naively' averaged equation. Our proof strongly relies on the recently obtained stochastic sewing lemma.
引用
收藏
页码:1826 / 1860
页数:35
相关论文
共 35 条
[1]  
[Anonymous], 1990, CAMBRIDGE STUD ADV M
[2]   BOUNDS FOR FUNDAMENTAL SOLUTION OF A PARABOLIC EQUATION [J].
ARONSON, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :890-&
[3]   A version of Hormander's theorem for the fractional Brownian motion [J].
Baudoin, Fabrice ;
Hairer, Martin .
PROBABILITY THEORY AND RELATED FIELDS, 2007, 139 (3-4) :373-395
[4]  
Bogachev V. I., 1998, MATH SURVEYS MONOGRA, V62
[5]   A LOWER BOUND FOR THE HEAT KERNEL [J].
CHEEGER, J ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :465-480
[6]   Mixed Stochastic Differential Equations: Existence and Uniqueness Result [J].
da Silva, Jose Luis ;
Erraoui, Mohamed ;
Essaky, El Hassan .
JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (02) :1119-1141
[7]   FORMULAS FOR THE DERIVATIVES OF HEAT SEMIGROUPS [J].
ELWORTHY, KD ;
LI, XM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 125 (01) :252-286
[8]  
Freidlin M.I., 1998, GRUNDLEHREN MATH WIS, V260
[9]  
FRIZ P. K., 2014, Universitext, DOI DOI 10.1007/978-3-319-08332-2
[10]  
Goebel M, 1999, Z ANAL ANWEND, V18, P205