Annealing effects of 850 nm vertical-cavity surface-emitting lasers after proton irradiation

被引:2
作者
Chen, Jiawei [1 ,2 ]
Li, Yudong [1 ]
Maliya, Heini [1 ]
Guo, Qi [1 ]
Zhou, Dong [1 ]
Wen, Lin [1 ]
机构
[1] Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Key Lab Funct Mat & Device Special Environm, 40-1 South Beijing Rd, Urumqi 830011, Peoples R China
[2] Univ Chinese Acad Sci, 19-A Yuquan Rd, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 中国科学院西部之光基金;
关键词
VCSEL; Displacement damage effect; Annealing; Proton radiation; Non -radiative recombination center; SPACE RADIATION;
D O I
10.1016/j.heliyon.2022.e10594
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A long-term annealing experiment was performed using 850 nm vertical-cavity surface-emitting lasers (VCSELs) irradiated with 10 MeV protons. Static parameters such as the threshold current, slope efficiency, and light output power were tested using annealing currents above and below the threshold. The experimental results indicated that these parameters gradually recovered with annealing time, and the degree of recovery was proportional to the annealing current. In addition, curve fitting was performed to obtain the direct relationship between the slope efficiency and annealing current. A comprehensive investigation of the annealing behavior of VCSELs is crucial for device applications in harsh radiation environments.
引用
收藏
页数:6
相关论文
共 23 条
[1]   Optical properties of electron beam and γ-ray irradiated InGaAs/GaAs quantum well and quantum dot structures [J].
Aierken, A. ;
Guo, Q. ;
Huhtio, T. ;
Sopanen, M. ;
He, Ch F. ;
Li, Y. D. ;
Wen, L. ;
Ren, D. Y. .
RADIATION PHYSICS AND CHEMISTRY, 2013, 83 :42-47
[2]   The Near-Earth Space Radiation Environment [J].
Bourdarie, Sebastien ;
Xapsos, Michael .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2008, 55 (04) :1810-1832
[3]  
Chen J.W., 2021, JPN J APPL PHYS, V61
[4]   III-V Oxidation: Discoveries and Applications in Vertical-Cavity Surface-Emitting Lasers [J].
Dallesasse, John M. ;
Deppe, Dennis G. .
PROCEEDINGS OF THE IEEE, 2013, 101 (10) :2234-2242
[5]   The Role of VCSELs in 3D Sensing and LiDAR [J].
Dummer, M. ;
Johnson, K. ;
Rothwell, S. ;
Tatah, K. ;
Hibbs-Brenner, M. K. .
OPTICAL INTERCONNECTS XXI, 2021, 11692
[6]   Experimental validation of simulations of radiation shielding effectiveness of materials by MULASSIS [J].
Emmanuel, A. ;
Raghavan, J. .
ADVANCES IN SPACE RESEARCH, 2016, 58 (11) :2376-2384
[7]   19-Element 2D Top-Emitting VCSEL Arrays [J].
Haghighi, Nasibeh ;
Moser, Philip ;
Zorn, Martin ;
Lott, James A. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2021, 39 (01) :186-192
[8]   Power, Bandwidth, and Efficiency of Single VCSELs and Small VCSEL Arrays [J].
Haghighi, Nasibeh ;
Moser, Philip ;
Lott, James A. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2019, 25 (06)
[9]   Radiation resistance of GaAs-GaAlAs vertical cavity surface emitting lasers [J].
Jabbour, J ;
Zazoui, M ;
Sun, GC ;
Bourgoin, JC ;
Gilard, O .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (04)
[10]   Effects of temperature and energy on the radiation response of GaAs/AlAs and GaAs/AlGaAs superlattices [J].
Jiang, Ming ;
Gong, Hengfeng ;
Xiao, Haiyan ;
Singh, Chandra Veer ;
Liu, Zijiang ;
Qiao, Liang ;
Zu, Xiaotao .
RADIATION PHYSICS AND CHEMISTRY, 2020, 174