Nanoporous ionic organic networks: from synthesis to materials applications

被引:168
作者
Sun, Jian-Ke [1 ]
Antonietti, Markus [1 ]
Yuan, Jiayin [1 ]
机构
[1] Max Planck Inst Colloids & Interfaces, Dept Colloid Chem, D-14424 Potsdam, Germany
基金
欧洲研究理事会;
关键词
MICROPOROUS POLYMER NETWORK; POROUS AROMATIC FRAMEWORKS; CARBON-DIOXIDE CAPTURE; DISPERSED PALLADIUM NANOPARTICLES; POLY(IONIC LIQUID) MEMBRANES; ORDERED MESOPOROUS POLYMER; PORE-SIZE; HYPERCROSSLINKED POLYMERS; INTRINSIC MICROPOROSITY; CO2; CAPTURE;
D O I
10.1039/c6cs00597g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The past decade has witnessed rapid progress in the synthesis of nanoporous organic networks or polymer frameworks for various potential applications. Generally speaking, functionalization of porous networks to add extra properties and enhance materials performance could be achieved either during the pore formation (thus a concurrent approach) or by post-synthetic modification (a sequential approach). Nanoporous organic networks which include ion pairs bound in a covalent manner are of special importance and possess extreme application profiles. Within these nanoporous ionic organic networks (NIONs), here with a pore size in the range from sub-1 nm to 100 nm, we observe a synergistic coupling of the electrostatic interaction of charges, the nanoconfinement within pores and the addressable functional units in soft matter resulting in a wide variety of functions and applications, above all catalysis, energy storage and conversion, as well as environment-related operations. This review aims to highlight the recent progress in this area, and seeks to raise original perspectives that will stimulate future advancements at both the fundamental and applied level.
引用
收藏
页码:6627 / 6656
页数:30
相关论文
共 202 条
[21]   Construction of porous cationic frameworks by crosslinking polyhedral oligomeric silsesquioxane units with N-heterocyclic linkers [J].
Chen, Guojian ;
Zhou, Yu ;
Wang, Xiaochen ;
Li, Jing ;
Xue, Shuang ;
Liu, Yangqing ;
Wang, Qian ;
Wang, Jun .
SCIENTIFIC REPORTS, 2015, 5
[22]   Crosslinked copolyazoles with a zwitterionic structure for organic solvent resistant membranes [J].
Chisca, S. ;
Duong, P. H. H. ;
Emwas, A. -H. ;
Sougrat, R. ;
Nunes, S. P. .
POLYMER CHEMISTRY, 2015, 6 (04) :543-554
[23]   Tubular microporous organic networks bearing imidazolium salts and their catalytic CO2 conversion to cyclic carbonates [J].
Cho, Hyun Chul ;
Lee, Han Sol ;
Chun, Jiseul ;
Lee, Sang Moon ;
Kim, Hae Jin ;
Son, Seung Uk .
CHEMICAL COMMUNICATIONS, 2011, 47 (03) :917-919
[24]   Hydrogen storage using polymer-supported organometallic dihydrogen complexes: a mechanistic study [J].
Cooper, Andrew I. ;
Poliakoff, Martyn .
CHEMICAL COMMUNICATIONS, 2007, (28) :2965-2967
[25]   Conjugated Microporous Polymers [J].
Cooper, Andrew I. .
ADVANCED MATERIALS, 2009, 21 (12) :1291-1295
[26]   Porous, crystalline, covalent organic frameworks [J].
Côté, AP ;
Benin, AI ;
Ockwig, NW ;
O'Keeffe, M ;
Matzger, AJ ;
Yaghi, OM .
SCIENCE, 2005, 310 (5751) :1166-1170
[27]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[28]   Design of high surface area poly(ionic liquid)s to convert carbon dioxide into ethylene carbonate [J].
Dani, Alessandro ;
Groppo, Elena ;
Barolo, Claudia ;
Vitillo, Jenny G. ;
Bordiga, Silvia .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (16) :8508-8518
[29]   Nanoporous organic polymer networks [J].
Dawson, Robert ;
Cooper, Andrew I. ;
Adams, Dave J. .
PROGRESS IN POLYMER SCIENCE, 2012, 37 (04) :530-563
[30]   Microporous organic polymers for carbon dioxide capture [J].
Dawson, Robert ;
Stoeckel, Ev ;
Holst, James R. ;
Adams, Dave J. ;
Cooper, Andrew I. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (10) :4239-4245