Genetically-regulated Neuromodulation Facilitates Multi-Task Reinforcement Learning

被引:7
作者
Cussat-Blanc, Sylvain [1 ]
Harrington, Kyle I. S. [2 ]
机构
[1] Univ Toulouse, F-31042 Toulouse, France
[2] Harvard Univ, Sch Med, Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA
来源
GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE | 2015年
关键词
Reinforcement learning; Gene regulatory network; Parameter control; Multi-task Learning; Neuromodulation;
D O I
10.1145/2739480.2754730
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we use a gene regulatory network (GRN) to regulate a reinforcement learning controller, the State-Action-Reward-State-Action (SARSA) algorithm. The GRN serves as a neuromodulator of SARSA's learning parameters: learning rate, discount factor, and memory depth. We have optimized GRNs with an evolutionary algorithm to regulate these parameters on specific problems but with no knowledge of problem structure. We show that genetically-regulated neuromodulation (GRNM) performs comparably or better than SARSA with fixed parameters. We then extend the GRNM SARSA algorithm to multi-task problem generalization, and show that GRNs optimized on multiple problem domains can generalize to previously unknown problems with no further optimization.
引用
收藏
页码:551 / 558
页数:8
相关论文
共 31 条
[1]  
[Anonymous], 2009, P 11 ANN C GEN EV CO
[2]  
[Anonymous], P 12 INT C ART LIF
[3]  
[Anonymous], 2020, Reinforcement Learning, An Introduction
[4]  
Banzhaf W, 2003, GENET PROGR SER, V6, P43
[5]  
Boyan J. A., 1995, Advances in Neural Information Processing Systems 7, P369
[6]  
Cussat-Blanc S., 2015, IEEE T EVOL IN PRESS
[7]  
Cussat-Blanc S., 2012, C COMP INT GAM CIG 1
[8]  
Cussat-Blanc S, 2012, UNDERST COMPLEX SYST, P353, DOI 10.1007/978-3-642-33902-8_14
[9]  
Davidson E.H., 2006, REGULATORY GENOME GE
[10]  
Degris T., 2014, RLPARK