A boundary element method for a multi-dimensional inverse heat conduction problem

被引:29
作者
Dinh Nho Hao [2 ]
Phan Xuan Thanh [3 ]
Lesnic, D. [1 ]
Johansson, B. T. [4 ]
机构
[1] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England
[2] Hanoi Inst Math, Hanoi, Vietnam
[3] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, Hanoi, Vietnam
[4] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
关键词
inverse heat conduction problem; ill-posed problem; boundary element method; Lipschitz domain; conjugate gradient method; Tikhonov regularization; NONCHARACTERISTIC CAUCHY-PROBLEM; LINEAR PARABOLIC EQUATIONS; ILL-POSED PROBLEMS; VARIATIONAL METHOD;
D O I
10.1080/00207160.2012.668891
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a variational method for a multi-dimensional inverse heat conduction problem in Lipschitz domains. We regularize the problem by using the boundary element method coupled with the conjugate gradient method. We prove the convergence of this scheme with and without Tikhonov regularization. Numerical examples are given to show the efficiency of the scheme.
引用
收藏
页码:1540 / 1554
页数:15
相关论文
共 13 条
[1]  
Alifanov O.M., 1995, INVERSE HEAT TRANSFE
[2]  
Alifanov O. M., 1995, Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems
[3]  
Beck J.V., 1985, Inverse Heat Conduction: Ill-Posed Problems
[4]   BOUNDARY INTEGRAL-OPERATORS FOR THE HEAT-EQUATION [J].
COSTABEL, M .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1990, 13 (04) :498-552
[5]   Splitting-based conjugate gradient method for a multi-dimensional linear inverse heat conduction problem [J].
Dinh Nho Hao ;
Thanh, Nguyen Trung ;
Sahli, Hichem .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 232 (02) :361-377
[6]  
Hao D., 1998, Methods for inverse heat conduction problems.-Peter Lang pub
[7]  
Hao D.N., 1998, Inverse Probl. Eng, V6, P177
[8]   A NONCHARACTERISTIC CAUCHY-PROBLEM FOR LINEAR PARABOLIC EQUATIONS .2. A VARIATIONAL METHOD [J].
HAO, DN .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1992, 13 (5-6) :541-564
[9]   A NONCHARACTERISTIC CAUCHY-PROBLEM FOR LINEAR PARABOLIC EQUATIONS .3. A VARIATIONAL METHOD AND ITS APPROXIMATION SCHEMES [J].
HAO, DN .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1992, 13 (5-6) :565-583
[10]   A variational discretization concept in control constrained optimization: The linear-quadratic case [J].
Hinze, M .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2005, 30 (01) :45-61