The Lehmer polynomial and pretzel links

被引:27
作者
Hironaka, E [1 ]
机构
[1] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2001年 / 44卷 / 04期
关键词
Alexander polynomial; pretzel knot; Mahler measure; Salem number; Coxeter groups;
D O I
10.4153/CMB-2001-044-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we find a formula for the Alexander polynomial Deltap(l).....p(k) (x) of pretzel knots and links with (p(l),...,p(k), - 1) twists, where k is odd and p(l),...,p(k) are positive integers. The polynomial Delta (2,3,7)(x) is the well-known Lehmer polynomial, which is conjectured to have the smallest Mahler measure among all monic integer polynomials. We confirm that Delta (2,3,7)(x) has the smallest Mahler measure among the polynomials arising as Delta (pl),...,(pk) (x).
引用
收藏
页码:440 / 451
页数:12
相关论文
共 14 条
[1]  
BOURBAKI N, 1968, GROUPES ALGEBRES LIE, V13
[2]   SPECULATIONS CONCERNING THE RANGE OF MAHLERS MEASURE [J].
BOYD, DW .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1981, 24 (04) :453-469
[3]   GROWTH FUNCTIONS OF SURFACE GROUPS [J].
CANNON, JW ;
WAGREICH, P .
MATHEMATISCHE ANNALEN, 1992, 293 (02) :239-257
[4]   GROWTH OF PLANAR COXETER GROUPS, PV NUMBERS, AND SALEM-NUMBERS [J].
FLOYD, WJ .
MATHEMATISCHE ANNALEN, 1992, 293 (03) :475-483
[5]   SYMMETRIES OF PLANAR GROWTH FUNCTIONS [J].
FLOYD, WJ ;
PLOTNICK, SP .
INVENTIONES MATHEMATICAE, 1988, 93 (03) :501-543
[6]  
Kawauchi A., 1996, SURVEY KNOT THEORY
[7]  
KIRBY R, 1997, STUD ADV MATH
[8]   Factorization of certain cyclotomic functions [J].
Lehmer, DH .
ANNALS OF MATHEMATICS, 1933, 34 :461-479
[9]   POLYNOMIAL INVARIANTS OF KNOTS OF CODIMENSION 2 [J].
LEVINE, J .
ANNALS OF MATHEMATICS, 1966, 84 (03) :537-&
[10]  
Lickorish W.B.R., 1991, INTRO KNOT THEORY