Stable two-dimensional solitons supported by radially inhomogeneous self-focusing nonlinearity

被引:18
作者
Sakaguchi, Hidetsugu [1 ]
Malomed, Boris A. [2 ]
机构
[1] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Dept Appl Sci Elect & Mat, Fukuoka 8168580, Japan
[2] Tel Aviv Univ, Sch Elect Engn, Fac Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
关键词
STABILITY; LATTICES; COLLAPSE;
D O I
10.1364/OL.37.001035
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate that modulation of the local strength of the cubic self-focusing (SF) nonlinearity in the two-dimensional geometry, in the form of a circle with contrast Delta g of the SF coefficient relative to the ambient medium with a weaker nonlinearity, stabilizes a family of fundamental solitons against the critical collapse. The result is obtained in an analytical form, using the variational approximation and Vakhitov-Kolokolov stability criterion, and corroborated by numerical computations. For the small contrast, the stability interval of the soliton's norm scales as Delta N similar to Delta g (the replacement of the circle by an annulus leads to a reduction of the stability region by perturbations breaking the axial symmetry). To further illustrate this mechanism, we demonstrate, in an exact form, the stabilization of one-dimensional solitons against the critical collapse under the action of a locally enhanced quintic SF nonlinearity. (C) 2012 Optical Society of America
引用
收藏
页码:1035 / 1037
页数:3
相关论文
共 33 条
[1]   Localized modes of binary mixtures of Bose-Einstein condensates in nonlinear optical lattices [J].
Abdullaev, F. Kh. ;
Gammal, A. ;
Salerno, M. ;
Tomio, Lauro .
PHYSICAL REVIEW A, 2008, 77 (02)
[2]   Propagation of matter-wave solitons in periodic and random nonlinear potentials [J].
Abdullaev, FK ;
Garnier, J .
PHYSICAL REVIEW A, 2005, 72 (06)
[3]   Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length [J].
Abdullaev, FK ;
Caputo, JG ;
Kraenkel, RA ;
Malomed, BA .
PHYSICAL REVIEW A, 2003, 67 (01) :10
[4]   Stationary localized modes of the quintic nonlinear Schrodinger equation with a periodic potential [J].
Alfimov, G. L. ;
Konotop, V. V. ;
Pacciani, P. .
PHYSICAL REVIEW A, 2007, 75 (02)
[5]   Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities [J].
Belmonte-Beitia, Juan ;
Perez-Garcia, Victor M. ;
Vekslerchik, Vadym ;
Torres, Pedro J. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[6]   Localized and periodic exact solutions to the nonlinear Schrodinger equation with spatially modulated parameters: Linear and nonlinear lattices [J].
Belmonte-Beitia, Juan ;
Konotop, Vladimir V. ;
Perez-Garcia, Victor M. ;
Vekslerchik, Vadym E. .
CHAOS SOLITONS & FRACTALS, 2009, 41 (03) :1158-1166
[7]   Wave collapse in physics: principles and applications to light and plasma waves [J].
Berge, L .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 303 (5-6) :259-370
[8]   Algebraic bright and vortex solitons in defocusing media [J].
Borovkova, Olga V. ;
Kartashov, Yaroslav V. ;
Malomed, Boris A. ;
Torner, Lluis .
OPTICS LETTERS, 2011, 36 (16) :3088-3090
[9]   Nonlinearity management in optics: Experiment, theory, and simulation [J].
Centurion, Martin ;
Porter, Mason A. ;
Kevrekidis, P. G. ;
Psaltis, Demetri .
PHYSICAL REVIEW LETTERS, 2006, 97 (03)
[10]   VARIATIONAL APPROACH TO COLLAPSE OF OPTICAL PULSES [J].
DESAIX, M ;
ANDERSON, D ;
LISAK, M .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1991, 8 (10) :2082-2086