Improved fatigue resistance of gradient nanograined Cu

被引:101
作者
Long, Jianzhou [1 ]
Pan, Qingsong [1 ]
Tao, Nairong [1 ]
Dao, Ming [2 ]
Suresh, Subra [3 ]
Lu, Lei [1 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[3] Nanyang Technol Univ, Singapore 639798, Singapore
基金
美国国家科学基金会;
关键词
Graded nanostructures; Surface engineering; Fatigue resistance; Surface roughening; Microstructural convergence; STRESS-STRAIN RESPONSE; GRAIN-SIZE; CYCLIC DEFORMATION; GRADED MATERIALS; STAINLESS-STEEL; ELASTIC-MODULUS; CONTACT-DAMAGE; HIGH-DUCTILITY; HIGH-STRENGTH; NANOCRYSTALLINE;
D O I
10.1016/j.actamat.2018.12.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cyclic stresses generally lead to fatigue damage and failure with important implications for material and component design, safety, performance and lifetime costs in major structural applications. Here we present unique results for copper to demonstrate that a thin superficial layer of graded surface nanostructure over a coarse-grained core suppresses strain localization and surface roughening, thereby imparting unprecedented resistance to both low-cycle and high-cycle fatigue without compromising ductility. Progressive homogenization of the surface-graded copper is shown to be superior in fatigue properties compared to that of any of its homogeneous counterparts with micro-, submicro- or nanograined structures. Since the findings here for enhancing resistance to fatigue are broadly applicable to a wide spectrum of engineering metals and alloys, the present results offer unique pathways to mitigate fatigue damage using a broad variety of processing routes, geometric design considerations, and structural parameters in many practical applications. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:56 / 66
页数:11
相关论文
共 56 条
[1]   Overview of fatigue performance of Cu processed by severe plastic deformation [J].
Agnew, SR ;
Vinogradov, AY ;
Hashimoto, S ;
Weertman, JR .
JOURNAL OF ELECTRONIC MATERIALS, 1999, 28 (09) :1038-1044
[2]   Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu-Al alloys [J].
An, X. H. ;
Wu, S. D. ;
Wang, Z. G. ;
Zhang, Z. F. .
ACTA MATERIALIA, 2014, 74 :200-214
[3]   FUNDAMENTAL-ASPECTS OF LOW AMPLITUDE CYCLIC DEFORMATION IN FACE-CENTERED CUBIC-CRYSTALS [J].
BASINSKI, ZS ;
BASINSKI, SJ .
PROGRESS IN MATERIALS SCIENCE, 1992, 36 :89-148
[4]   Mechanically-induced grain coarsening in gradient nano-grained copper [J].
Chen, W. ;
You, Z. S. ;
Tao, N. R. ;
Jin, Z. H. ;
Lu, L. .
ACTA MATERIALIA, 2017, 125 :255-264
[5]   Mechanics of indentation of plastically graded materials - II: Experiments on nanocrystalline alloys with grain size gradients [J].
Choi, I. S. ;
Detor, A. J. ;
Schwaiger, R. ;
Dao, M. ;
Schuh, C. A. ;
Suresh, S. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2008, 56 (01) :172-183
[6]   A gradient nanostructure generated in pure copper by platen friction sliding deformation [J].
Deng, S. Q. ;
Godfrey, A. ;
Liu, W. ;
Hansen, N. .
SCRIPTA MATERIALIA, 2016, 117 :41-45
[7]   A low-cycle fatigue life prediction model of ultrafine-grained metals [J].
Ding, HZ ;
Mughrabi, H ;
Höppel, HW .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2002, 25 (10) :975-984
[8]   Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper [J].
Fang, T. H. ;
Li, W. L. ;
Tao, N. R. ;
Lu, K. .
SCIENCE, 2011, 331 (6024) :1587-1590
[9]   CYCLIC STRESS-STRAIN RESPONSE OF FCC METALS AND ALLOYS .1. PHENOMENOLOGICAL EXPERIMENTS [J].
FELTNER, CE ;
LAIRD, C .
ACTA METALLURGICA, 1967, 15 (10) :1621-&
[10]   EXUDATION OF MATERIAL FROM SLIP BANDS AT THE SURFACE OF FATIGUED CRYSTALS OF AN ALUMINIUM COPPER ALLOY [J].
FORSYTH, PJE .
NATURE, 1953, 171 (4343) :172-173