Edge-connectivity and (signless) Laplacian eigenvalue of graphs

被引:13
|
作者
Liu, Huiqing [1 ]
Lu, Mei [2 ]
Tian, Feng [3 ]
机构
[1] Hubei Univ, Sch Math & Comp Sci, Wuhan 430062, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sdiences, Inst Syst Sci, Beijing 100080, Peoples R China
关键词
Edge-connectivity; Laplacian eigenvalue; Signless; Girth; SPECTRUM; NUMBERS; BOUNDS;
D O I
10.1016/j.laa.2013.10.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first show that if the second smallest Laplacian eigenvalue of a graph is no less than (k-1)n/(delta+1)(n-1-delta) or the second largest signless Laplacian eigenvalue of a graph is no more than 2 delta - (k-1)n/(delta+1)(n-1-delta) then the graph is k-edge-connected, where is the minimum degree of the graph and n is the order of the graph. Also, we give a Laplacian eigenvalue condition and a signless Laplacian eigenvalue condition for a graph to be k-edge-connected involving the girth g of the graph, respectively. Our results generalize some known results. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:3777 / 3784
页数:8
相关论文
共 50 条
  • [21] Edge perturbation on graphs with clusters: Adjacency, Laplacian and signless Laplacian eigenvalues
    Cardoso, Domingos M.
    Rojo, Oscar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 512 : 113 - 128
  • [22] The signless Laplacian spectrum of the (edge) corona of two graphs
    Cui, Shu-Yu
    Tian, Gui-Xian
    UTILITAS MATHEMATICA, 2012, 88 : 287 - 297
  • [23] The Restricted Edge-Connectivity of Kronecker Product Graphs
    Ma, Tianlong
    Wang, Jinling
    Zhang, Mingzu
    PARALLEL PROCESSING LETTERS, 2019, 29 (03)
  • [24] On size, order, diameter and edge-connectivity of graphs
    Ali, P.
    Mazorodze, J. P.
    Mukwembi, S.
    Vetrik, T.
    ACTA MATHEMATICA HUNGARICA, 2017, 152 (01) : 11 - 24
  • [25] Edge-connectivity of regular graphs with two orbits
    Liu, Fengxia
    Meng, Jixiang
    DISCRETE MATHEMATICS, 2008, 308 (16) : 3711 - 3716
  • [26] ON THE SIGNLESS LAPLACIAN AND NORMALIZED SIGNLESS LAPLACIAN SPREADS OF GRAPHS
    Milovanovic, Emina
    Altindag, Serife Burcu Bozkurt
    Matejic, Marjan
    Milovanovic, Igor
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (02) : 499 - 511
  • [27] COMPUTING EDGE-CONNECTIVITY IN MULTIGRAPHS AND CAPACITATED GRAPHS
    NAGAMOCHI, H
    IBARAKI, T
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (01) : 54 - 66
  • [28] The Restricted Edge-Connectivity of Strong Product Graphs
    Ye, Hazhe
    Tian, Yingzhi
    AXIOMS, 2024, 13 (04)
  • [29] Detachments preserving local edge-connectivity of graphs
    Jordán, T
    Szigeti, Z
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2003, 17 (01) : 72 - 87
  • [30] Detachment of vertices of graphs preserving edge-connectivity
    Fleiner, B
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 18 (03) : 581 - 591