A comparative study of truly incompressible and weakly compressible SPH methods for free surface incompressible flows

被引:67
作者
Chen, Z. [1 ,2 ]
Zong, Z. [1 ,2 ]
Liu, M. B. [3 ]
Li, H. T. [1 ,2 ]
机构
[1] State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Naval Architecture, Dalian 116024, Peoples R China
[3] Chinese Acad Sci, Inst Mech, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
incompressible SPH; weakly compressible SPH; free surface flows; fluid-structure interaction; SMOOTHED PARTICLE HYDRODYNAMICS; SIMULATION; CONSISTENCY; PRESSURE;
D O I
10.1002/fld.3824
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, the performance of the incompressible SPH (ISPH) method and an improved weakly compressible SPH (IWCSPH) method for free surface incompressible flows are compared and analyzed. In both methods, the Navier-Stokes equations are solved, and no artificial viscosity is used. The ISPH algorithm in this paper is based on the classical SPH projection method with common treatments on solid boundaries and free surfaces. The IWCSPH model includes some advanced corrective algorithms in density approximation and solid boundary treatment (SBT). In density approximation, the moving least squares (MLS) approach is applied to re-initialize density every several steps to obtain smoother and more stable pressure fields. An improved coupled dynamic SBT algorithm is implemented to obtain stable pressure values near solid wall areas and, thus, to minimize possible numerical oscillations brought in by the solid boundaries. Three representative numerical examples, including a benchmark test for hydrostatic pressure, a dam breaking problem and a liquid sloshing problem, are comparatively analyzed with ISPH and IWCSPH. It is demonstrated that the present IWCSPH is more attractive than ISPH in modeling free surface incompressible flows as it is more accurate and more stable with comparable or even less computational efforts. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:813 / 829
页数:17
相关论文
共 33 条
[1]  
[Anonymous], 2009, Sloshing
[2]  
[Anonymous], 2003, Smoothed particle hydrodynamics: a meshfree particle method, DOI DOI 10.1007/S00466-004-0573-1
[3]   Incompressible SPH for free surface flows [J].
Bockmann, Arne ;
Shipilova, Olga ;
Skeie, Geir .
COMPUTERS & FLUIDS, 2012, 67 :138-151
[4]   A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems [J].
Chen, JK ;
Beraun, JE .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 190 (1-2) :225-239
[5]   An investigation into the pressure on solid walls in 2D sloshing using SPH method [J].
Chen, Z. ;
Zong, Z. ;
Li, H. T. ;
Li, J. .
OCEAN ENGINEERING, 2013, 59 :129-141
[6]   Numerical simulation of interfacial flows by smoothed particle hydrodynamics [J].
Colagrossi, A ;
Landrini, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 191 (02) :448-475
[7]   An SPH projection method [J].
Cummins, SJ ;
Rudman, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 152 (02) :584-607
[8]   A set of canonical problems in sloshing, Part I: Pressure field in forced roll-comparison between experimental results and SPH [J].
Delorme, L. ;
Colagrossi, A. ;
Souto-Iglesias, A. ;
Zamora-Rodriguez, R. ;
Botia-Vera, E. .
OCEAN ENGINEERING, 2009, 36 (02) :168-178
[9]  
Dilts GA, 1999, INT J NUMER METH ENG, V44, P1115, DOI 10.1002/(SICI)1097-0207(19990320)44:8<1115::AID-NME547>3.0.CO
[10]  
2-L