Anisotropic Thermal Magnetoresistance for an Active Control of Radiative Heat Transfer

被引:82
作者
Abraham Ekeroth, Ricardo M. [1 ,2 ]
Ben-Abdallah, Philippe [3 ,4 ]
Cuevas, Juan Carlos [5 ,6 ,7 ]
Garcia-Martin, Antonio [1 ]
机构
[1] CEI UAM CSIC, Inst Micro & Nanotecnol IMN CNM, CSIC, Isaac Newton 8, E-28760 Madrid, Spain
[2] Univ Nacl Ctr Prov Buenos Aires, Inst Fis Arroyo Seco, Pinto 399, RA-7000 Tandil, Argentina
[3] Univ Paris Saclay, CNRS, Inst Opt, Lab Charles Fabry,UMR 8501, 2 Ave Augustin Fresnel, F-91127 Palaiseau, France
[4] Univ Sherbrooke, Dept Mech Engn, Sherbrooke, PQ J1K 2R1, Canada
[5] Univ Autonoma Madrid, Dept Fis Teor Mat Condensada, E-28049 Madrid, Spain
[6] Univ Autonoma Madrid, Condensed Matter Phys Ctr IFIMAC, E-28049 Madrid, Spain
[7] Univ Konstanz, Dept Phys, D-78457 Constance, Germany
关键词
radiative heat transfer; thermomagnetic effects; anisotropic magnetoresistance; magneto-optics; magnetic sensors; DISCRETE-DIPOLE APPROXIMATION; NEAR-FIELD; ATOMIC CONTACTS; NANOSCALE GAPS;
D O I
10.1021/acsphotonics.7b01223
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The discovery that the near-field radiative heat transfer enables to overcome the limit set by Planck's law holds the promise to have an impact in different nanotechnologies that make use of thermal radiation, and the challenge now is to find strategies to actively control and manipulate this near-field thermal radiation. Here, we predict a huge anisotropic thermal magnetoresistance (ATMR) in the near-field radiative heat transfer between magneto-optical particles when the direction of an external magnetic field is changed with respect to the heat current direction. We illustrate this effect with the case of two InSb particles where we find that the ATMR amplitude can reach values of up to 800% for a magnetic field of 5 T, which is many orders of magnitude larger than its spintronic analogue. This thermomagnetic effect could find broad applications in the field of ultrafast thermal management as well as magnetic and thermal remote sensing.
引用
收藏
页码:705 / 710
页数:11
相关论文
共 42 条
[1]  
[Anonymous], 1989, PRINCIPLES STAT RADI, DOI DOI 10.1007/978-3-642-72685-9
[2]  
[Anonymous], 2000, Modern Magnetic Materials: Principles and Applications
[3]   Photon Thermal Hall Effect [J].
Ben-Abdallah, P. .
PHYSICAL REVIEW LETTERS, 2016, 116 (08)
[4]   Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap [J].
Bernardi, Michael P. ;
Milovich, Daniel ;
Francoeur, Mathieu .
NATURE COMMUNICATIONS, 2016, 7
[5]  
Bohren C. F., 1998, Wiley Science Series
[6]   Anisotropic magnetoresistance and anisotropic tunneling magnetoresistance due to quantum interference in ferromagnetic metal break junctions [J].
Bolotin, Kirill I. ;
Kuemmeth, Ferdinand ;
Ralph, D. C. .
PHYSICAL REVIEW LETTERS, 2006, 97 (12)
[7]   Near-Field Enhanced Negative Luminescent Refrigeration [J].
Chen, Kaifeng ;
Santhanam, Parthiban ;
Fan, Shanhui .
PHYSICAL REVIEW APPLIED, 2016, 6 (02)
[8]   Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer [J].
Chen, Kaifeng ;
Santhanam, Parthiban ;
Sandhu, Sunil ;
Zhu, Linxiao ;
Fan, Shanhui .
PHYSICAL REVIEW B, 2015, 91 (13)
[9]   Study of radiative heat transfer in Ångstrom- and nanometre-sized gaps [J].
Cui, Longji ;
Jeong, Wonho ;
Fernandez-Hurtado, Ctor ;
Feist, Johannes ;
Garcia-Vidal, Francisco J. ;
Carlos Cuevas, Juan ;
Meyhofer, Edgar ;
Reddy, Pramod .
NATURE COMMUNICATIONS, 2017, 8
[10]   Near-field radiative heat transfer between chiral metamaterials [J].
Cui, Longji ;
Huang, Yong ;
Wang, Ju .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (08)